$T H E R M O P T I M \circledast$

USE

OF

EXTERNAL COMPONENTS

VERSION JAVA 1.5

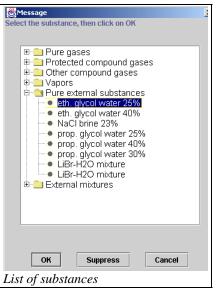
© R. GICQUEL JULY 2003

USE OF EXTERNAL COMPONENTS	3
EXTENSION SYSTEM FOR THERMOPTIM BY ADDING EXTERNAL CLASSES Software implementation	
Viewing the available external classes	4
Representation of an external component in the diagram editor	
Loading an external class	
Thermocouplers	5
External nodes	
MISCELLANEOUS COMMENTS	8

 \odot R. GICQUEL 1997 - 2003. All Rights Reserved. This document may not be reproduced in part or in whole without the author's express written consent, except for the licensee's personal use and solely in accordance with the contractual terms indicated in the software license agreement.

Information in this document is subject to change without notice and does not represent a commitment on the part of the author.

Use of external components


Volume 3 of the reference manual Thermoptim is dedicated to the achievement of external components. In this note, we just provide some guidance on their practical use.

Extension system for Thermoptim by adding external classes

One great advantage of Thermoptim is that its graphic environment can be used to visually build models for a large number of energy systems, from the most simple refrigerator to complex integrated gasification combined cycle electric power plants using several hundred elements.

Not only does this greatly simplify the modeling process and facilitate subsequent use and maintenance of the model, but it also makes the models more reliable. The connections between the different elements are made automatically, thus ensuring consistency.

Through version 1.4, only the components available in the Thermoptim primitive type set could be assembled in this manner, which limited the potential of the software. A number of users wished to be able to define their own elements and/or their own substances.

Thermoptim's interface with external classes (Java code elements) provides the solution and facilitates the interoperability of the software with the outside world, especially with other applications developed using Java.

The benefits are two-fold:

- create Thermoptim extensions from common primitive type set, by adding external modules that define the elements that automatically appear on the screens in a seamless fashion. Thus users can add their own substances or components not available in the basic set.

- drive Thermoptim from another application, either to guide a user (smart tutorial) or to check the code (driver or regulation, access to thermodynamic libraries).

The previous and opposite figures show how the external substances are added to Thermoptim's list of substances, and then replace an internal substance on the point screen. They are just as easy to use as if they were part of the software.

	ol water 25%	display				
exter				Duplicate		Save
	nal mixture			Suppress		Close
(T,P,h)	Closed syste	em (T,v,u)	Wa	ter vapor/gas m	nixtures	
1) P	and T known
rolled	h (k	J/kg)	18,43	3473684] O P	and h known
	s (k	J/kg/K)	0,079	91875639) O P	and s known
			exe	rgy (kJ/kg)	-4,383	2
5						
78,15						
18,4	13473684					
0,07	791875639				6	alculate
0,0	0959216875	i				acuale
3 69	93,16					
3 69	93,16					
1						
	5 78,15 18,4 0,00 3 65 3 65 1	folled h (k. s (k. s (k. 78,15	rolled h (kJ/kg) (s (kJ/kg/k) (5 78,15 18,43473684 0,0791875639 0,000959216875 3 693,16 3 693,16 1	rolled h (kJkg) 18,43 s (kJkgK) 0,079 exe 5 78,15 18,43473684 0,0791875639 0,000959216875 3 693,16 3 693,16 1	rolled h (kJkg) 18,43473684 s (kJkgK) 0,0791875639 exergy (kJkg) 5 78,15 18,43473684 0,0791875639 0,000959216875 3 693,16 3 693,16 1	rolled h (kJ/kg) 18,43473684 P s (kJ/kg/k) 0,0791875639 P exergy (kJ/kg) -4,383 5 78,15 18,43473684 0,0791875639 0,000959216875 3 693,16 3 693,16 1

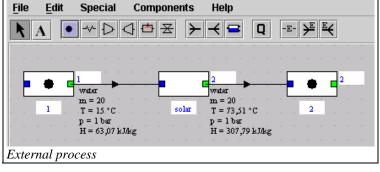
The figure opposite shows how an external component representing a solar collector appears in the diagram

editor, and the figure below shows the screen of the corresponding process, composed partly of Thermoptim internal code and partly of external code (lower third on the right).

Software implementation

Practically speaking, adding a new external process is quite easy. Simply create a specific class, which inherits

from the abstract parent class extThopt.ExtProcess. The interaction with Thermoptim is ensured on two levels:


- by general methods for performing the required calculations;
- by a JPanel that is built in to the external process screen. Thus, the class designer can create his own graphic interface, which is then inserted into the Thermoptim screen.

The classes used in Thermoptim, CorpsExterne, TransfExterne and the other, define the interface methods, which fall into three additional categories:

- Internal Thermoptim methods designed to be obfuscated
- Non-obfuscated internal methods that are directly used by the external classes: These methods are used to
 execute the Thermoptim methods with external parameter settings, and **must not be overloaded.** Their
 signature must be strictly respected: in particular, the structure of the Vectors of Objects used as arguments
 must correspond exactly to what Thermoptim expects, or a ClassCastException will be generated.
- External methods corresponding to Thermoptim's obfuscated methods: These methods are used to execute the external methods from within Thermoptim, and **must be overloaded.**

The non-obfuscated methods falling into the last two categories are listed in Appendix 1, for all of the accessible classes. For more information, please see the html documentation for these classes provided in the folder api_Thermoptim.

Viewing the available external classes

To help you use and manage the external classes, the line External Class Viewer from the Special menu displays all of the external classes available.

They are sorted by type (substances, processes, mixers, dividers, drivers) with a short description of the class selected and where it comes from (extThopt.zip and extUser.zip archives as well as classes under development).

This screen can be consulted while you are developing your model.

Representation of an external component in the diagram editor

Specific icons were added to represent the external

components ($^{-E-}$ for processes, $\stackrel{}{\succ}$ for mixers, and

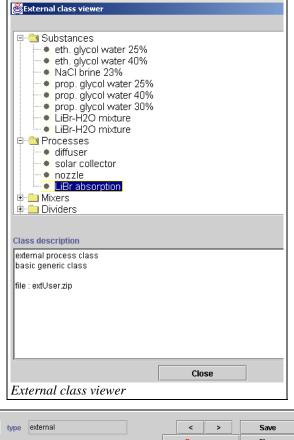
for dividers). The external component is then selected when the simulator is updated from the diagram as indicated below.

Loading an external class

process dummy

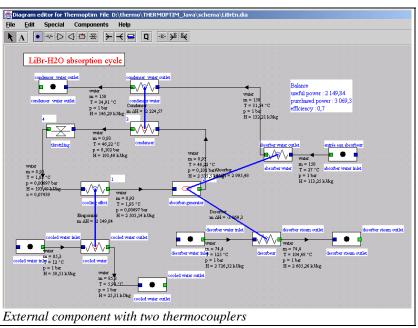
To load an external process (for an external node, the process is the same), you can either:

- from the simulator screen click on the column header of the process array, then choose External and finally select the type of external process you want from the list;
- or, from the diagram editor, build the external component graphically then update the simulator from the diagram. In the case of an external process, by default it is a "heat source / sink" type, as shown in the screen opposite.


Once this default process is created, double click on the label "source / sink" to access the list of all external processes available. Choose the one you want and it will be loaded.

Thermocouplers **and a series and a**

The thermocoupler system completes the heat exchanger system by allowing components other than exchange processes to connect to one or more exchange processes to represent a thermal coupling. This system does not encompass the exchanger system: two exchange processes cannot be connected by a thermocoupler.


This system has a number of benefits, because it can be used to represent many thermocouplers that do not constitute a heat exchange in the traditional sense, like for example cooling the walls of the combustion chamber

energy typ	e other		set flow				
inlet point			flow	rate 20	 closed sy open syst 		obser
1		display	m Ah	0,984		Calculate	
T (°C)	15			source / sink			
P (bar)	1						
h (kJ/kg)	63,07						
					a a constant d'a traterio		
quality outlet poir	0 t		-	reference	source / sink		
outlet poir 2	t	display]		ed or extracted	1	
outlet poir		display]			1	
outlet poir 2 T (°C)	t	display]			1	

of a reciprocating engine, cooled compression, and above all supply or removal of heat from the multi-functional external components.

The figure above is an illustration of this: An absorption refrigeration cycle, whose absorption-desorption system is defined and integrated in an external process, is supplied with the steam that exits the evaporator then enters the condenser. This cycle involves the mixture LiBr-H₂O, whose properties are modeled either directly in the external process, or in an external substance, and requires high temperature heat supply to the desorber and medium temperature heat removal from the absorber. The representation of these thermocouplers is possible thanks to the thermocoupler system: the

external process calculates the thermal energies that must be exchanged, and the thermocoupler recalculates the corresponding "exchange" process, which updates its downstream point.

The types of thermocouplers used by an external component appear in the lower right hand corner of the screen. Double click on one of the types to open the screen of the corresponding thermocoupler.

Given that thermocouplers are a type of heat exchanger, it is valuable to define them by values such as effectiveness ε , UA, NTU or LMTD, that can be calculated using similar equations. The component sends to each of its thermocouplers the equivalent values for flow rates, inlet and outlet temperature and thermal energy transferred, which they must take into account in their calculations. Specific methods are provided in the

process	absorber-generator	type	external			<	>	Save
energy ty			set flow			Supp osed sys	ress	Close
inlet point			flow	ate 0,93		oseu sys oen syste		
1	disp	day	m Ah	74,74			Calculat	e
T (°C)	1,93			LiBr absorptio	n			
P (bar)	0,00697			absorber to	emperature (°C	39.00	10	
h (kJ/kg) quality	2 505,14	-		desorber to	emperature (°C			
quanty					ch. efficiency	0.654		
outlet poir				absorber lo desorber lo		3069		
2	disp	day		Rich solutio		0.404		
T (°C)	46,22			Poor soluti	on fraction	0.354	ļ.	
P (bar)	0,102			Rich solution	on flow	12.00	12	
h (kJ/kg)	2 585,5			Poor soluti	on flow	11.07	2	
quality	1			reference				
					bsorber esorber			
Externa	l process							

external class code and are not user-modifiable.

However, there are limits to the similarities with exchangers: for example, temperature crossovers unacceptable in an exchanger may occur in a thermocoupler, leading to absurd values.

So it is best to transmit values that are unlikely to lead to this type of situation. One possible solution is to assume that the thermocoupler is isothermal for calculations of characteristics that are similar to exchanger characteristics. For example, a combustion chamber may be assumed to be at mean temperature between its upstream and downstream points when calculating cooling. This assumption is not absurd and may prevent a temperature crossover between the cooling fluid and the gases that cross the component.

In the case of the absorption machine presented above, we assumed that the absorber and desorber were isothermal.

Both lead to the screens below. If we had not taken the temperature of the absorber as a reference for the exchange calculations, keeping the temperatures of the steam entering and exiting the external process, we would have ended up with a temperature crossover.

For external processes that accept several thermocouplers and for external nodes, the potential complexity of the calculations prevents the exchange process from driving the thermocoupler. Its load is always set by the external component. This is why there are fewer options for calculating a

Absorber type counterflow < > Save Close absorber thermal fluid process Calculate eau absorbeur absorbeur-générateu display Те 39 27 Te ninch method fluid Ts 31,53731177 38,9 Ts calculated 158 12,00144475 m calculated minimum pinch 4,17841059 2 495,88090821 Cp Cp 2 995,48274326 2 995.48274326 m AH m ∆H 318.41186499 11A calculate exchan R 0.0220399605 NTU 0.482304198 9,50942118 LMTD epsilon 0,381286703 Absorber

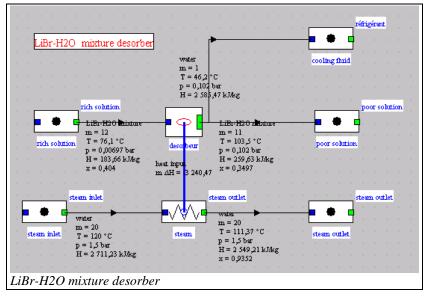
thermocoupler than for a heat exchanger: The user can only choose between calculating the outlet temperature of the exchange process (at a given flow rate) and the flow rate, when the temperature is known.

Note that on the thermocoupler screen, the external component fluid can be selected as a pinch fluid and a minimum pinch value can be entered (see optimization method, volume 1).

External nodes

The nodes of Thermoptim's basic set are extremely simple components used to complete the description of the fluid circuits. They are always adiabatic, and they ensure the conservation of the mass flow rate and enthalpy

name	Desorber	type counterflow			<	>	Save
		desorber			Supp	ress	Close
thermal f désorbe		У	process absorbeu	r-générateu	display	Ca	alculate
Те	125		Те	102,646			
Ts	104,4765547	calculated	Ts	102,746		pinch me	thod fluid
m	74,4) calculated	m	11,07144475	n	ninimum pi	nch 1
Ср	2,01009617		Ср	2 772,323867	57		
m AH	-3 069,30494785		m AH	3 069,304947	85		
			UA	375,3933	1172		
calcul	late exchange		R	0,004872	38402		
			NTU	2,510133	15		
	epsilor	n 0,918110642	LMTD	8,1762373	22		
Desor	ber						


However, there is one somewhat special component, considered as a process, but which is in fact a node in most cases: combustion, which receives a oxidizer and a fuel, and from which burned gases exit.

In the LiBr-H2O absorption example, a number of energy systems are involved, as well as components of varying complexity, which can have a number of input and outlet fluids, after various internal calculations, with or without thermocoupling with external heat sources.

External nodes allow a user to define these components. Only external mixers and dividers are defined: no component simultaneously performs both functions (receiving and emitting several fluids), but you need only couple an external mixer with an external diffuser to do so.

In many respects, we encounter the same problems in implementing these external nodes as with thermocouplers: the potential complexity of the calculations to be made in the node makes it necessary for the node to take over and control both the main vein and the branches, since no default calculation is possible.

The verification and consistency problems are even more critical than for thermocouplers: only the node designer knows which processes it must be connected to in inlet and outlet. The user must refer to the documentation of the class to know how to use it.

The figure above shows the diagram of a desorber for an absorption machine using the $LiBr-H_2O$ mixture whose properties must in this case be provided by an external substance.

The external node screen is shown opposite. As with external processes, it contains a general part defined in the Thermoptim basic set, completed by a part defined by the user (here the lower left zone). In the model shown here, the only parameter defined in the node is the temperature of the desorber. The properties of the rich solution (mass fraction and flow rate) and the state of the refrigerant are obtained from their respective processes.

The node calculates the flow rates of the refrigerant and the poor solution, its state, and heat supply required.

ode desorb	eur	type ext	ernal divider	,	< >	
main process	disp	alay m globa	12		Duplicate Suppress	Save
rich solution	re	h global T global		:559		Calculate
process name	m abs	m rel	T (°C)	Н	add a bra	anch
cooling fluid poor solution	1,0013 10,9987	1,0013 10,9987	46,2 103,5	2 585,47 259,63		men
			decorber			
Desorber desorber tempe Rich solution fra		13.500	desorber			

The thermocoupler then calculates the final state of the steam used.

Before each recalculation, the node checks that its structure is correct and loads the values that it needs to be calculated. Then it updates the thermocoupler that can in turn be recalculated. In this example, we assumed that the desorber was isothermal, and we took the flow rate of the poor solution as the reference flow rate.

Miscellaneous comments

You may have noticed that the screens of the external processes represented here are composed partly of Thermoptim internal code and partly of external code (lower right section in the processes, lower left in the nodes.). This is because the character strings used in the external components have not been "internationalized" the way the Thermoptim basic set has.

But this does not affect their use in any way. However, you can see that the number display has not been internationalized either, so the decimal separator is not the same: it is a period and not a comma. Of course, this can be modified, but it has not yet been done. This means that the figures must be entered with a point in the part defined in the external component, and with a comma in the rest of the screen. It is important to pay close attention to this issue, otherwise number formatting errors will be detected by Java.

heat input	type counterflow			< >	Save
	desorber		5	Suppress	Close
fluid		process			
display		desorbeu	display	La	lculate
120		Те	103,5		
111,37268948	calculated	Ts	103,6	e pinch met	thod fluid
20	⊖ calculated	m	10,99873923	minimum pir	nch 1
18,78029243		Ср	2 946,21795988		
-3 240,46830531		m ∆H	3 240,46830531		
		UA	278,88277579		
late exchange		R	0,0115910977		
		NTU	0,742487841		
epsilon	0,522867304	LMTD	11,6194637		
	Itel display 120 111,37268948 20 18,78029243 -3 240,46830531 -3	desorber fluid 	desorber huid process desorber 120 Te 111,37268948 © calculated Ts 20 Calculated m 18,78029243 Cp -3 240,46830531 m AH late exchange UA R NTU	desorber s Iuid process display desorbeur 120 Te 111,37268948 © calculated 20 calculated 18,78029243 calculated -3 240,46830531 m AH 3 240,46830531 UA 276,88277579 R 0,0115910977 0,742487841 NTU 0,742487841 LMTD 11,6194637	desorber Suppress huid process display Ca 120 Te 103,5 Ca 111,37268948 • calculated Ts 103,6 • pinch mer 20 calculated Ts 103,8 • pinch mer 18,78029243 calculated m 10,99873923 minimum pir 18,78029243 Cp 2 946,21795988 minimum pir 18,78029243 Cp 2 78,88277579 R 0,0115910977 NTU 0,742487841 LMTD