
Desuperheater component R. Gicquel, January 2010

Steam desuperheater

A steam desuperheater achieves partial or total desuperheating of superheated steam. This operation, which
generally leads to detrimental irreversibilities, is performed only in specific circumstances, as at mechanical
vapor compression outlet, or to regulate the
production of superheated steam for
cogeneration.

Technologically, the superheating is achieved
by spraying a liquid stream in a vapor flow.

One of the difficulties in using such a
component is that the injected liquid flow rate
depends on the thermodynamic state of the
steam, and it is regulated according to the
desired state for desuperheated steam. It is not
known a priori, so that a simple Thermoptim mixer is not well suited for modeling it.

The DeSuperHeater component we have built (Figure 1) is an external mixer which receives upstream two
processes, one representing the steam and other the liquid. It is set by defining the desired output state for the
mixture (either by a temperature difference relative to the saturated state, or by its temperature), taking into
account any pressure drop. The component determines the flow rate of liquid required, and updates recursively
processes which are connected upstream.

Graphical interface of the desuperheater

A graphical interface possible for the desuperheater is given in Figure 2.

The setting used here is: no steam pressure drop (outlet pressure equal to the inlet pressure) and outlet
temperature equal to the saturation plus 2 °C of superheating. The necessary desuperheating water flow is
determined from the mass and enthalpy balances, and updated in the corresponding process and those upstream.

Thermodynamic model

Figure 1: Desuperheater

Figure 2: Desuperheater GUI

2

The model parameters are, firstly, a pressure drop factor relative to the steam pressure, and secondly the
temperature to be reached at the end of desuperheating, defined either directly by its value, or relative to the
saturation .

The model input data are as follows (provided by other system components):
- The thermodynamic state of steam, including its pressure and enthalpy hv
- The thermodynamic state of desuperheating water, and in particular its enthalpy hl
- Flow of steam mv

The outputs are:
- The thermodynamic state of the desuperheated steam and in particular enthalpy hvd
- Flow of desuperheating water ml
- Flow of desuperheated steam mvd

The outlet pressure and temperature allowing one to determine the enthalpy of desuperheated steam hvd, the
desuperheater equations correspond to a linear system of equations with two unknowns, ml and mvd:

The conservation of mass provides: mvd = mv + ml
The conservation of enthalpy gives mv hv + ml hl = mvd hvd

This system is solved without any difficulty and leads to results in Figure 3.

Computer
implementation

GUI

The component GUI is given in
Figure 2. It allows one to build
the lower third of the, the rest
being defined as a standard
Thermoptim.

The parameters correspond to the
four lines added, and calculation
results automatically appear in
the rest of the screen. The input data are supplied by processes upstream of the system in which the component is
inserted: steam flow rate and upstream point states.

Physical model

With the previous notations, the model equation is as follows, and the calculation of the output rate is trivial:

ml (hvd - hl) = mv (hv - hvd)

Specifically, the sequence of calculations is as follows:
1) checking the consistency of the node;
2) updating the component before calculation by loading values of the upstream processes and points;
3) reading the parameters on the screen of the external component;
4) calculation of the state of the downstream point and the flow of liquid;
5) update the external node.

Presentation of the code

Now consider the problems encountered in practice in each of these steps.

1) checking the consistency of the node

Figure 3: External mixer representing the desuperheater, with its
connections

3

The component receiving several upstream processes, it is first necessary to ensure that their structure is
consistent with what is expected. It is the role of methods getMixerStructure() and checkConsistency()

2) update the component by loading upstream processes and points values

One difficulty here is that an external component has no direct access to simulator variables: these variables are
obtained by special generic methods which build Vectors of different structure according to the desired object.

The procedure is not complicated but needs to be respected:

This method loads the state from the "upstream" point into variables that can be used to initialize the values
which we would then need for calculations, here the substance "steam" represents the steam

or the state of upstream and downstream points:

4

3) reading the parameters on the screen of the external component

the ExtThopt package provides a number of simple but robust methods to convert in doubles the Strings
displayed in the JTextField fields used in the GUI, and vice versa for displaying doubles in these fields. They
are implemented as static methods of the class extThopt.Util:

4) calculation of the state of the downstream point and the flow of liquid

Depending on whether one chooses to set the value of superheating or the temperature of superheating, we
calculate the output state:

We then calculate the flow of fluid required, and the resulting total flow:

5) update the external node

The Thermoptim method updateMixer () allows one to update the node from the values loaded into an array of
Vectors corresponding to each branch connected to it.

Once updated, the processes connected upstream of the process corresponding to the liquid, if any, see their rate
updated.

5

Saving and loading of the model parameters

You can save in project files Thermoptim normal (and then re-read them) the settings of external components by
using two specific methods:

public String saveCompParameters()

public void readCompParameters(String ligne_data)

The only constraint is that the entire setting of the external components must fit on one line, with a format
compatible with that used in the kernel of the software: the various backup fields are separated by tabs.

ExtThopt.Util provides a generic method to attribute to the value of a parameter a code allowing one to identify
it:

public static String extr_value(String ligne_data, String search)

The backup is performed in the form "parameter = value", and research is in the form:

value = Util.lit_d (Util.extr_value (ligne_data, "parameter"));

If the parameters of the component is too complex to be saved in this way, nothing prevents a user from using it
to save the name of a specific setup file, and then re-read this file as desired.

