Steam desuperheater

A steam desuperheater achieves partial or total desuperheating of superheated steam. This operation, which
generally leads to detrimental irreversibilities, is performed only in specific circumstances, as at mechanical
vapor compression outlet, or to regulate the
production of superheated steam for
cogeneration.

Technologically, the superheating is achieved b i [
by spraying a liquid stream in a vapor flow. |

product vapar MLV wapar Denpertiegter
One of the difficulties in using such a c
component is that the injected liquid flow rate
depends on the thermodynamic state of the ——

steam, and it is regulated according to the Figure 1: Desuperheater
desired state for desuperheated steam. It is not
known a priori, so that a simple Thermoptim mixer is not well suited for modeling it.

The DeSuperHeater component we have built (Figure 1) is an external mixer which receives upstream two
processes, one representing the steam and other the liquid. It is set by defining the desired output state for the
mixture (either by a temperature difference relative to the saturated state, or by its temperature), taking into
account any pressure drop. The component determines the flow rate of liquid required, and updates recursively
processes which are connected upstream.

Graphical interface of the desuperheater

A graphical interface possible for the desuperheater is given in Figure 2.

node Desuperheater | type external mixer =< | =
Duplicate Save
main process m global 457282643

Suppress Close
MCY vapor

hglobal 267242665164

is0-pressure links Calculate

Tglobal 8715210705

[rOCESS name m ahs Ti"C) H
compressor 45 118,12 271432 gdd.ahranch
weater desuperhea. [0,072826 20 83,584

delete a branch

desuperheater

Pout/Pin factor 1 |

outlet temperature (°C) [100 |
saturated vapor

AT superheat (°C) |2 |

Figure 2: Desuperheater GUI

The setting used here is: no steam pressure drop (outlet pressure equal to the inlet pressure) and outlet
temperature equal to the saturation plus 2 °C of superheating. The necessary desuperheating water flow is
determined from the mass and enthalpy balances, and updated in the corresponding process and those upstream.

Thermodynamic model

Desuperheater component R. Gicquel, January 2010

The model parameters are, firstly, a pressure drop factor relative to the steam pressure, and secondly the
temperature to be reached at the end of desuperheating, defined either directly by its value, or relative to the
saturation .

The model input data are as follows (provided by other system components):
- The thermodynamic state of steam, including its pressure and enthalpy h,,

- The thermodynamic state of desuperheating water, and in particular its enthalpy h,
- Flow of steam m,,

The outputs are:
- The thermodynamic state of the desuperheated steam and in particular enthalpy hyq

- Flow of desuperheating water m;
- Flow of desuperheated steam m,4

The outlet pressure and temperature allowing one to determine the enthalpy of desuperheated steam h,q4, the
desuperheater equations correspond to a linear system of equations with two unknowns, m; and my:

The conservation of mass provides: myq =m, + m,
The conservation of enthalpy gives my hy, + m; hy = myq hyg

This system is solved without any difficulty and leads to results in Figure 3.

_CompUter i H= 798 klkg
implementation w :

2 @
Gul by Ty ater desperheating

L m @ %mq— mrvr
The component GUI is given in 0,92 i
Figure 2. It allows one to build o vger 195, oo Dipmeas| ITIEL
the lower third of the, the rest 32614 5 ke P =085t m= £395 B’
being defined as a standard MOV = 000523 RS N &=
Thermoptim. DML
COMMETRSSOr

The parameters correspond to the
four lines added, and calculation ch;%lrireitigﬁs External mixer representing the desuperheater, with its

results automatically appear in
the rest of the screen. The input data are supplied by processes upstream of the system in which the component is
inserted: steam flow rate and upstream point states.

Physical model

With the previous notations, the model equation is as follows, and the calculation of the output rate is trivial:
my (Mg - h)) = my (hy - hyg)

Specifically, the sequence of calculations is as follows:

1) checking the consistency of the node;

2) updating the component before calculation by loading values of the upstream processes and points;

3) reading the parameters on the screen of the external component;

4) calculation of the state of the downstream point and the flow of liquid;
5) update the external node.

Presentation of the code
Now consider the problems encountered in practice in each of these steps.

1) checking the consistency of the node

The component receiving several upstream processes, it is first necessary to ensure that their structure is
consistent with what is expected. It is the role of methods getMixerStructure() and checkConsistency()

public void calculateProcess ()

getMixerStructure () ;
checkConsistency ()

2) update the component by loading upstream processes and points values

One difficulty here is that an external component has no direct access to simulator variables: these variables are
obtained by special generic methods which build Vectors of different structure according to the desired object.

The procedure is not complicated but needs to be respected:

private woid checkConsistency () {
dtring[] args=new Stringl[2]:
Vector[] wBranch=new Vector[Z2]:
isBuilt=true;
liguidProcess="";
steamProcess="";

desurchFrocess=mainProcess;

args[0] ="process™://type of the element [see mwethod getProperties (String[] args))
args[1] =desurchProcess;//name of the process (see method getProperties (3tring[] args))
Vector vwPropMain=proj.getPropertiesiargs) ;

Double £f=(Double)lvPropMain.elementit (3 ;

m desurch=f.doubleValuei]:

String amont=(String) vPropMain.elementdt(l);://gets the upstresm point nsme
getFointProperties (amont) ;//direct parsing of point property wvector

This method loads the state from the "upstream" point into variables that can be used to initialize the values
which we would then need for calculations, here the substance "steam™ represents the steam

desurchPoint=amont;
T desurch=Tpoint:
P_desurch=Fpoint;
/ ¥ desurch=Xpoint;
H desurch=Hpoint:
String now=nomlorps;
args[0] ="point™:
args[1] =amont;
wvPropMain=proj.getProperties (args) ;
steam=(rg.corps.Corps)vPropMain.element it (0] ;

or the state of upstream and downstream points:

for (int j=0;j<nBranches;j++) {
args[0] ="process"://type of the element (see method getProperties(String[] args))
args[1] =nomBranche[j]://name of the process (See method getProperties(String[] args))
vBranch[j]=proj.getProperties(args);
String aval=(String)vBranch[j].elementit{2);://get= the downstream point name
getPointProperties (aval) ;//direct parsing of point property vector
now=nomwCorps;
//Check the substance at inlet
System.out.println(™ ligne "+3+" nowBranche[j] "+nomBranche[j]+" aval "+aval+™ nomCorps "+nomCorps+" Fpoint ™
if i (Epoint==0)){// liquide
liguidProcess=nomBranche[j] ;
liguidPoint=aval;
T_ligquid=Tpoint:
P _ligquid=FPpoint;
H_ligquid=Hpoint:
F_ligquid=Spoint;
L liguid=Xpoint:
f=(Double)vEranch([j] .elementit (3);
whiguid=f.doubleValue():
i
if | (Xpoint==1)]{//vapeur
steamProcess=nomBranche[3]
steamPoint=awval;
P_steam=Ppoint;
H steam=Hpoint:
3_steam=Spoint;
T steamwm=Tpoint:
X steam=Xpoint;
f=(Double)vBranch([j] .elementit (3);
wSteamw=1f.doubleValus();

3) reading the parameters on the screen of the external component

the ExtThopt package provides a number of simple but robust methods to convert in doubles the Strings
displayed in the JTextField fields used in the GUI, and vice versa for displaying doubles in these fields. They
are implemented as static methods of the class extThopt.Util:

Jflecture du facteur de perte de charge

LeltaP factor=Ucil.lit dideltaP factor value.getText(]]:
déimize & jour de la pression aval
F_desurch=F_steam*DeltaP factor;

Jilecture de la valeur de la surchauffe & réaliser

double deltaT=0til.lit_d{deltaTsat_walue.getText ()] ;
Jflecture de la wvaleur de la tewpérature de désurchauffe
double outletT=Utcil.lit_d(outletT wvalue.getText (])+273.15;

4) calculation of the state of the downstream point and the flow of liquid

Depending on whether one chooses to set the value of superheating or the temperature of superheating, we
calculate the output state:

Jimise & jour de la température de désurchauffe

if (JCheckSaturation. igdelected ()) T desurch=steam.get3atTemperature (P_desurch, 1) +deltaT;
else T desurch=outletT;

ffealoul de 1'état de sortie désiré

steam.CalePropCorps (T _desurch,P_desurch,1] :

We then calculate the flow of fluid required, and the resulting total flow:
get3ubstProperties (nomCorps) ;
H desurch=Hsubst:
Jioaloul du dékbit de licuide nécessaire
mLiquid=mSteam*(H_steam—H_desurch]/(H_desurch—H_liquid];
Jioaleul du déebit aval
m_desurch=mLiguid+mSteamn;

5) update the external node

The Thermoptim method updateMixer () allows one to update the node from the values loaded into an array of
Vectors corresponding to each branch connected to it.

Once updated, the processes connected upstream of the process corresponding to the liquid, if any, see their rate
updated.

JiNise & jour du nosud externs

wTransfo= new Vector [nEranches+1]:

wPoints= new Vector [hEranches+1]:

setupbesurchProcess (m desurch, T desurch, P desurch,1j;
setupliquidProcess (wbigquid, T liguid,P liguid,X licuid):
setupiteawFProcess (w3team, T steaw, P Steam, £ steam) ;

updateMixer (vTransfo,vPoints, T_desurch,H desurch);

proj.setUpstreawF low(liquidProcess, mbicuid);//modifie récursivement les débits en smont

Saving and loading of the model parameters

You can save in project files Thermoptim normal (and then re-read them) the settings of external components by
using two specific methods:

public String saveCompParameters()
public void readCompParameters(String ligne_data)

The only constraint is that the entire setting of the external components must fit on one line, with a format
compatible with that used in the kernel of the software: the various backup fields are separated by tabs.

ExtThopt.Util provides a generic method to attribute to the value of a parameter a code allowing one to identify
it:

public static String extr_value(String ligne_data, String search)
The backup is performed in the form "parameter = value", and research is in the form:
value = Util.lit_d (Util.extr_value (ligne_data, "parameter™));

If the parameters of the component is too complex to be saved in this way, nothing prevents a user from using it
to save the name of a specific setup file, and then re-read this file as desired.

public void readCompParameters(3tring ligne_data) {
double P_fact=Util.lit_diUcil.extr walue(ligne_data, "deltaP_ factor_walue")];:
deltaP_factor_wvalue.setText (Util.aff d(P_fact,5)):
String val=Util.extr_wvalue(ligne data, "deltaTsat_wvalue"):
if{val!=null)deltaTsat_wvalue.setText (val):
val=Util.extr_walue(ligne_data, "saturationT"):
if (val!=null)JCheckSaturation.setSelected(Util.lit_bival)):
val=Util.extr_ wvalue(ligne data, "outletT wvalue"):
if (val!=nulljoutletT wvalue.setText (val);
String valeur=Util.extr wvalue(ligne_data, "compRef"):
if (wvaleur !'=null)compRef.setText (valeur) ;

i

public 3tring saveCompParameters(){
String h="deltaP factor walue="+deltaP factor wvalue.getText (] +tab
+"deltaTsat_wvalue="+deltaTsat_value.getText () +tab
+"zaturationT="+Util.aff b(JCheck3aturation.isSelected())+tab
+foutletT wvalue="+outletT value.getText () +tab
+"compRef="4+compRef.getText () +tab

return h;

