TREES

Training for Renovated Energy Efficient Social housing

Intelligent Energy -Europe programme, contract n° EIE/05/110/SI2.420021

Intelligent Energy Europe

Section 3 Case studies 3.4 Montreuil, France

Bruno PEUPORTIER ARMINES – CEP

TREES

Context and objectives of the project

- Large social housing stock from the 60's and 70's in France, with a poor performance
- High potential for improving environmental quality
- Objectives of the project :
 - reduce by 25% CO2 emissions
 - Contribute in a municipal sustainability project
 - Exchange knowledge about technical, social, environmental and financial aspects in the frame of a European project, REGEN LINK (8 countries) coordinated by PATRIMONIUM (The Netherlands)
 - Demonstrate innovation and promote replication

Building before and after renovation

Heating load reduced by 32%, possible 50% reduction if indoor temperature = 20° C Cost : 5,000 € (standard Renovation) + 3,500 € per unit - 76 tons CO₂ yearly (-26%)

Construction : 1969, not insulated, single glazing heating load : 150 kWh/m²/a (2,700 degree days base 18)

Photos : B. PEUPORTIER

Contents

- Objectives and project presentation,
- Building before renovation,
- Decision process,
- Refurbishment concepts and design study,
- Realisation,
- Monitoring results,
- Environmental assessment,
- Costs,
- Conclusions.

Introduction, objectives of the project

- Improve environmental quality in social housing renovation
- Reduce by 25% CO₂ emissions compared to a standard renovation
- Implement replicable techniques
- Contribute in a municipal sustainability project
- Exchange knowledge about technical, social, environmental and financial aspects in the frame of a European project, REGEN LINK (8 countries)

Location

6

the building before renovation

Photos : B. PEUPORTIER

Construction : 1969, not insulated, single glazing

Heating load : 150 kWh/m2/a (2,700 degree days base 18)

Energy needs before renovation

The variation of the heating load is related to climatic variation, and a different use of the ground floor

Energy retrofit is part of a global strategy

- Multicriteria approach (energy, environment, comfort, costs, image of the building and neighbourhood...)
- Integrated design involving the architect, engineer and contractors in charge of renovation works and maintenance
- Energy efficiency : insulation, efficient systems
- Energy moderation : thermostat set point at 20°C instead of 23°C, shower rather than bath etc.
- Integration of renewable energy systems
- Participatory approach involving the residents

First steps : site analysis + residents survey

- possibilities for investment
- analysis of the residents' needs, their wishes

and preference regarding technologies

- compatibility with their way of life (e.g. glazed balconies or sunspaces)
- analysis of the existing building and site, solar resource : facade orientation, shading
- ability for an efficient maintenance
- system size and architectural integration

Choosing the main design options

- is the solar exposure high enough to integrate passive and active components ?
- how thick should be the insulation ?
- how to reduce ventilation heat losses ?
- which is the most appropriate glazing type ?
- what are the priorities according to the budget ?
- are the proposed technical solutions acceptable by the tenants ?
- Iterative process architecture techniques costs – users' acceptance

Participation of the residents

Glazed balconies

Glazing area, Demand side management Neighbourhood workshops

REES

Site analysis, evaluation of solar exposure

Is this building suitable for solar retrofit ?

13

Site analysis, evaluation of solar exposure

Height 0° = horiz. 90° = vert.

azimuth, 0° = south 90° = west June December

Shading from other buildings

Roof level

Technologies

- Improved insulation
- advanced glazing
- humidity-controlled ventilation
- air preheating in glazed balconies
- Solar water heaters
- Iow flow rate sanitary equipment

Results of thermal simulation, COMFIE

TREES

Facade insulation

Life cycle assessment, example : CO₂ emissions Optimum 20-40 cm (CO₂), 10 cm (cost)

External insulation

The existing facade was not flat -> use of mineral wool

Glazing area and solar gain

Compromise between costs (opaque wall is cheaper than glazing), energy performance (high glazing area in south facades, low in north), functionality (more day-light in living rooms than bedrooms) and tenants wishes (higher glazing area).

No hard coating low e glazing from Saint Gobain -> Pilkington glazing

Solar preheating and ventilation control

Architect's sketch

Design of the glazed balconies

Studying solar protection

Glazed balconies will have to be ventilated in hot periods Temperatures remain acceptable in the dwelling

TREES

Montreuil / avant rehab ventil 2 activ chauff / Top south Montreuil / avant rehab ventil 2 activ chauff / North

Example comparison between north and South oriented rooms

Building site, balconies

Glazed balconies

Cost of glazed balcony : 9,000 € per unit

District heating, before renovation

Single heating loop for 2 buildings

District heating, after renovation

Separated heating loop in each building

Solar water heater

No support from the region -> no sufficient investment for a collective system, individual system not relevant in this case (district heating)

Low flow rate showers

Photo : www.eco-techniques.fr

Venturi effect to increase the water speed, compensating a lower flow rate

Results of life cycle assessment, EQUER

CO₂ emissions per year

Results of life cycle assessment, EQUER

34

Use of GB Tool

Building after renovation

Heating load reduced by 32%, indoor temp. increased by 3°C

Energy consumption, space heating

Reduction = -32% instead of -50%

temperature control (up to 23.5°C)

Measure : progressive reduction (0.5°C every 6 months)

- ground level partly heated according to occupancy
- users behaviour (opening windows)

Measure : information of the tenants

- thermal bridges (floor, windows, roof, balconies)
- ventilation flow rate (ach ?)

Measured energy consumption

Temperatures, with glazed balcony, winter period

The temperature is much milder in the glazed balcony than outside

TREES

Comparison with and without glazed balcony

2002 : without glazed balcony 2003 : with glazed balcony

Summer 2003 (2 weeks unusual heat wave)

Maximum temperature 10°C cooler indoor than outdoor

Temperature frequency curves

1 year : December 2002 to December 2003

Daylighting

Indoor comfort, winter week

TREES

Indoor humidity within comfort conditions (30 – 50%)

Indoor comfort, summer week

TREES

Indoor humidity within comfort conditions (30 – 50%)

Environmental issues

	Energy Sav [kWh/yea	Fuel typ		TEP / year [Tonne Equivaler t
Heatin	217000	District hea	74,4	18,7
Electric	17000		1,5	4,4
Total	234000		75,9	23,0

- 76 tons CO₂ yearly = 26% reduction

Economic balance

- ► Renovation cost : 265 000 € + demonstration 185 000 €,
- 5000 €+ 3 500 €per dwelling unit
- global pay back time : 16 years
- some technologies more cost effective than others :
 - Low emissivity and argon filled glazing (+++ : 2 years)
 - Low flow rate showers (+++)
 - Moisture controlled ventilation (++)
 - Thicker insulation (20 years)
 - Glazed balconies
 - Solar domestic hot water (no regional support in 2002)

Conclusions

TREES

- Advanced glazing is very cost-effective, as well as low flow rate sanitary equipment
- More insulation is cost effective with a limit
- Ventilation control is in average cost effective but the actual performance depends on the occupancy
- Glazed balconies are not cost effective, but appreciated by the residents
- Integration of solar energy requires support
- Other projects in preparation including preheating
 - of ventilation air

