TREES

Training for Renovated Energy Efficient Social housing

Intelligent Energy Europe programme - Contract n° EIE/05/110/SI2.420021

Intelligent Energy Europe

Section 3 - Case study 3.1 Gårdsten, Sweden

Jan-Olof Dalenbäck CIT Energy Management AB

TOPIC BOUNDARIES

- Renovation of multifamily buildings in a Northern European Climate
- Municipal housing
 - Management
 - Economy
- Solar collectors as one of several options

EC – THERMIE PROJECTS

Solhus 1 (SHINE) – 1997-2001 255 unoccupied apartments Total contract - SKANSKA

Solhus 2 (RegenLink) - 2000-2004 243 occupied apartments Several contracts

Ongoing renovation – 255 apartments

After renovation – 255 apartments

GENERAL APPROACH

- **Different opportunities** in different building areas (age, design, maintenance)
- The approach should be the same
 - Comprehensive feasibility studies
 - Experienced consultants
 - Reduced energy requirements
 - Appropriate contracts (5 year guarantee ?!)
 - Evaluation Follow-up !

ENERGY – EXIST. MF BUILDING

CAUSE	ACTION
Behaviour (Tenants)	Ongoing information
Equipment (Electr.)	Change of equipment 10-15 years
Incorrect use of equipment	Education and adjustment 1-3 years
Heat demand (Indoor climate)	Rebuilding/renov./replacement Systems 15-20 years Building comp. 30-50 years

HOLISTIC APPROACH

- Requirements vs. Feasibility
- Maintenance vs. Improvements (Re-use if possible)
- Traditional vs. New technologies
- Architectural integration
- LCC vs. Investments

ENERGY TARGETS

- Building envelope <u>Heat</u> (losses)
- Ventilation <u>Heat</u> (losses)
- DHW <u>Heat</u> (demand), water (use)
- Equipment (fans, etc.) Electricity
- Systems operation <u>Heat & electr.</u>
- Tenant behaviour Heat, electr. & water

nerav

anagement

"Design study"

"TRADITIONAL" MEASURES

- Ventilation to be inspected Improved systems
- Roofs to be renovated Additional insulation
- Balconies to be renovated Glazed balconies
- <u>Windows</u> to be renovated
 - Inner window panes replaced by low-e
- Gables to be renovated Additonal insulation
- <u>Drainage</u> to be improved
 <u>- Additional insulation on floor slabs</u>

"NEW" MEASURES

- Roofs to be renovated
 - Roof-integrated solar collectors (DHW)
- <u>Laundries</u> to be replaced New <u>washing</u> <u>machines</u> and laundry dryers <u>connected to</u> <u>the hot water system</u>
- <u>White goods</u> to be replaced
 - Energy labelled white goods
- Presence controlled lamps in common spaces

Energy

Management AB A Chalmers Industriteknik Company

- <u>PC-based supervision system</u>
- Individual metering

"High-rise" - Before

Roof module collectors that fit to the roof trusses

"Low-rise" - Before

RESULT

- Heat supply reduced >35%, i.e. more than expected
- **Electricity** supply reduced >25%
- Water supply reduced >40%
- Opportunities for further reductions

Heat supply ~ 145 kWh/m² occupied area

Energy

Total electricity ~ 50 kWh/m² occupied area

Energy

Total water use ~ 120 m³/apt

Energy

ECONOMICS

- Total investment ~ 12 M€
 incl. VAT and management cost
 (~ 47 000 € per apartment)
- Energy measures ~ 2,1 M€
 (~ 8 400 € per apartment)
- Operational savings ~ 0,15 M€/a
 - (~ 600 € per year and apartment)
- Feasible without subsidies !

nerav

anagement

CONCLUSIONS

- Building renovation with a succesful combination of traditional and new energy measures
- Major requirements are:
 - Interest and knowledge
 - Comprehensive pre-design
 - Follow-up and Evaluation

