TREES

Training for Renovated Energy Efficient Social housing

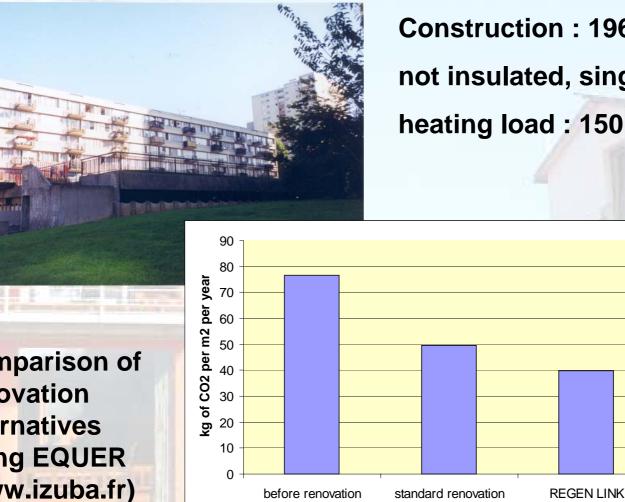
Intelligent Energy -Europe programme, contract n° EIE/05/110/SI2.420021

Intelligent Energy Europe

Section 2 Tools 2.3 Life cycle assessment

Bruno PEUPORTIER ARMINES – CEP

TREES


Main issues and definitions

- Eco-design : Integrating environmental aspects during the design, e.g. of a new construction or a renovation project
- Environmental aspects :
 - Preservation of resources (energy, water, materials, land),
 - Protection of ecosystems at different scales : planetary (climate, ozone layer), regional (forests, rivers...), local (waste, air quality...)
 - Links between environment and health
- LCA (life cycle assessment) : accounting substances taken from and emitted to the environment, deriving environmental indicators, e.g. global warming potential, interpreting the results

Possible applications of life cycle assessment

- manufacturers can study the eco-design of building materials and equipment,
- Architects and building consultants can compare various alternatives during the design phase in order to reduce the environmental impacts of a renovation project,
- facility managers can study the influence of the users behaviour and advise appropriate measures during the operation phase of a building,
- building owners and local communities can require and check the environmental performance level of projects.

Example LCA application : renovation of a social housing block near Paris

Construction : 1969 not insulated, single glazing heating load : 150 kWh/m2/an

renovation

wood fuel district

heating

Comparison of renovation alternatives using EQUER (www.izuba.fr)

CO₂ emissions per m² and per year

Contents

- Introduction
- Presentation of the method, assumptions,
- list of tools and web sites, tool validation and intercomparison,
- example application in the retrofit of social housing
 - : reduction of the environmental impacts obtained

with various technical measures,

- sensitivity studies
- Conclusions

Introduction

- Important environmental problems : climate change, toxic emissions, resource depletion, waste...
- High contribution of the building sector, e.g. 40% of the energy consumption, 30% of raw material consumption, 30% of solid waste generation
- Need of integrating environmental issues in design, largely influencing the performance of buildings
- Life cycle assessment constitutes a relevant tool, in new constructions but also in renovation

Contribution of the building sector to environmental burden

- 40% of the total energy consumption (United Nations Environment Programme), 45% in Europe
- ▶ 30% of raw materials use (UNEP data)
- 20% of the total water consumption and effluents (UNEP)
- 40% of CO₂ emissions (UNEP)
- 30% of solid waste generation (UNEP)
- Essential effects on human health (we spend 90% of our time in buildings) : air quality, noise...

Eco-design of buildings

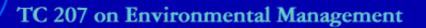
- Integrating environmental aspects during the design of a new construction or a renovation project
- Preservation of resources (energy, water, materials, land),
- Protection of ecosystems at different scales : planetary (climate, ozone layer), regional (forests, rivers...), local (waste, air quality...)
- Links between environment and health
- LCA (life cycle assessment) is a method to assess these issues

Possible applications of life cycle assessment

- manufacturers can study the eco-design of building materials and equipment,
- Architects and building consultants can compare various alternatives during the design phase in order to reduce the environmental impacts of a project,
- facility managers can study the influence of the users behaviour and advise appropriate measures during the operation phase of a building,
- building owners and local communities can require and check the environmental performance level of projects.

ISO 14 000 standards

- 14001 : management system
- 14010 : audit
- ▶ 14020 : labels
- 14030 : environmental performance assessment
- 14040 : life cycle assessment
- 14050 : glossary


14040 standards (LCA)

- 14040 : general principles (1997, updated 2006)
- 14041 : goal and scope definition and inventory analysis (1998)
- 14042 : life cycle impact assessment (2000)
- 14043 : interpretation (2000)
- 14044 : requirements and guidelines (2006)
- 14047 : examples of application of ISO 14042 (2003)
- 14048 : data documentation format (2002)
- 14049 : examples of application of ISO 14041 (2000)

Www.tc207.org

ISO/TC 207's ninth plenary will be held in Kuala Lumpur, Malaysia from July 1-8, 2001. Further details to follow...

ISO

BO/TC H

STOCKHOLH

Welcome to the official ISO/TC 207 website! This website is the home of the <u>International Organization for Standardization's (ISO)</u> Technical Committee 207 on Environmental Management--the committee responsible for developing the <u>ISO 14000</u> series of standards and guidance documents. The secretariat of ISO/TC 207 is held by the <u>Standards Council of Canada (SCC)</u> and administered by <u>CSA International (CSA)</u>.

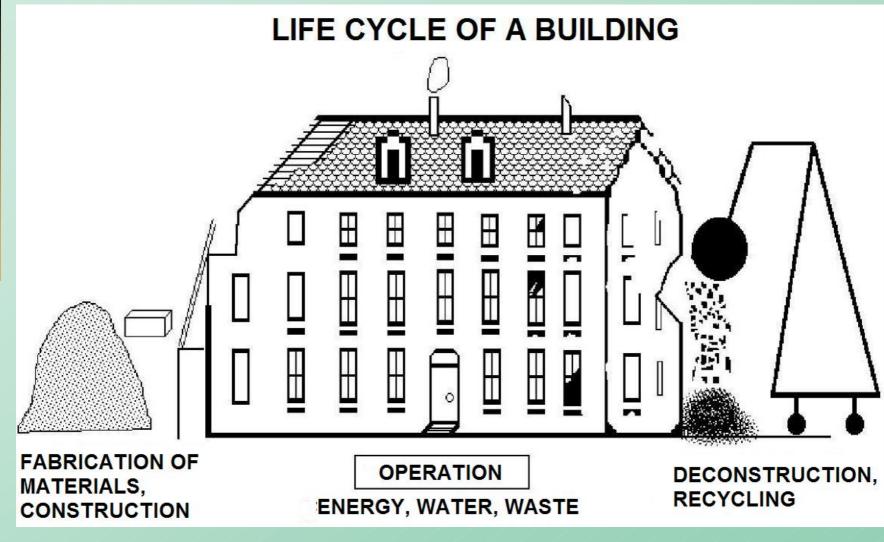
Late breaking news from Stockholm ...

Contact Us Home

Resolutions from ISO/TC 207's 8th plenary (in PDF format- click here)

Version française (format PDF - cliquez ici)

Resoluciones en Español (tecleo aquí)


French standards regarding buildings (AFNOR)

- P 01-010 : information about environmental characteristics of construction products
- P 01-020 : environmental and sanitary characteristics of buildings
- P 01-030 : environmental management of building projects

Life cycle of a building

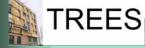
Phases of an LCA (ISO 14040)

Goal and scope definition

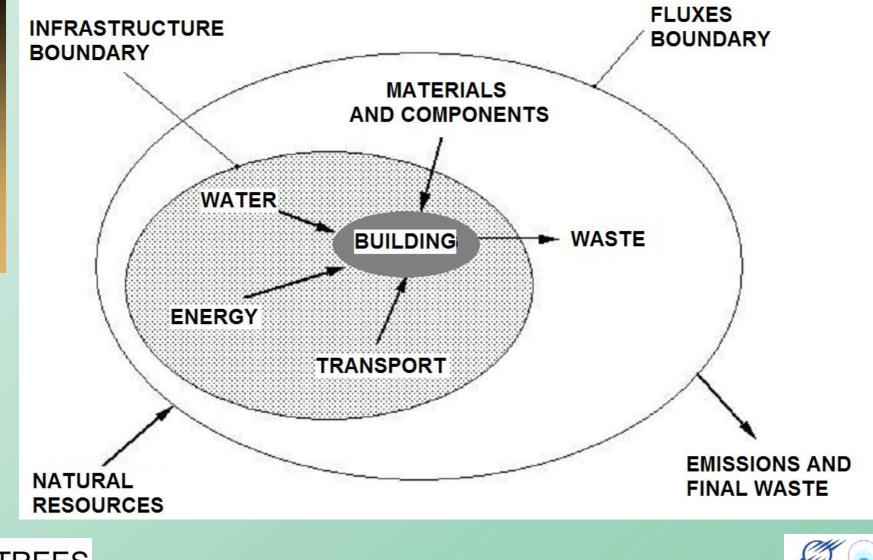
- Functional unit
- Systems boundaries

Inventory analysis

- Hypotheses regarding energy, transport, recycling etc.
- Impact assessment, eco-profile
- Interpretation
- + applications, e.g. product development and improvement



Goal and scope definition


Design a building with lower impacts Functional unit :

- Quantity, e.g. 4,820 m² or 1 m² dwelling area,
- Function : apartment building,
- Quality of the function : comfort (clear, 20°C in winter and under 30°C during a typical summer, quiet...), health (air and water quality...)
- Duration : e.g. 30 years, or 1 year
- System and boundaries (see next slide),
- Method and hypotheses (see next slides)

System boundaries corresponding to a building

Hypotheses regarding energy, transport, recycling...

- How is energy consumption calculated (correlation, simulation) ?
- Is renewable energy included ?
- How is the transport of materials modelled (load calculated according to the quantity and density of the material, assuming empty return of vehicles ?)
- How is recycling accounted for, e.g. bonus at both the fabrication and end of life phases, « value corrected substitution method », International iron and steel Institute method

Inventory phase

- Substances taken from and emitted to the environment (input and output fluxes) :
- Raw materials, primary energy...
- Emissions into air
- Emissions into water
- Emissions into the ground, waste
- Including upstream processes (e.g. extraction and transport of energy, raw materials...)
- Including downstream processes (waste)

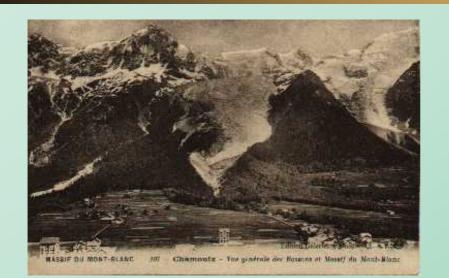
Exemple inventories : several hundreds of data

Oekoinventare, ETH Zürich

			Laine		Minerai de	Mousse du			
			minérale	Manganèse		PUR	NaCl	NaOH	
	Cd Cadmium m	kg	1.26E-10	5.65E-11	1.98E-11	4.14E-10	1.11E-10	8.94E-11	
	Cd Cadmium p	kg	1.96E-08	1.53E-08	1.15E-09	1.21E-08	3.61E-10	2.50E-09	
	Cd Cadmium s	kg	2.08E-08	1.05E-07	3.40E-09	8.81E-07	1.03E-08	2.32E-08	
	CF4 p	kg	1.70E-08	2.58E-07	1.21E-08	1.72E-07	5.31E-09	4.25E-08	
	CH3Br p	kg		0	0	0	0	0	0
	CH4 Methan m	kg	9.74E-07	2.94E-06	6.66E-06	7.12E-06	3.51E-07	6.72E-07	
	CH4 Methan p	kg	0.00379	0.00929	0.000246	0.00871	0.000196	0.00153	
	CH4 Methan s	kg	1.41E-05	0.000116	3.25E-06	0.000176	4.88E-06	2.03E-05	
	CN Cyanide p	kg	3.60E-16	1.73E-15	1.41E-16	2.80E-08	2.88E-15	2.39E-15	
	CN Cyanide s	kg	1.56E-08	1.09E-08	9.56E-10	8.79E-09	2.24E-10	1.74E-09	
	Co Cobalt m	kg	6.74E-10	4.63E-09	7.27E-09	4.89E-09	1.01E-10	7.58E-10	
	Co Cobalt p	kg	1.56E-09	1.83E-09	3.06E-10	1.60E-09	6.12E-11	2.73E-10	
	Co Cobalt s	kg	4.03E-08	6.38E-07	6.63E-09	1.17E-06	1.24E-08	1.05E-07	
	CO Kohlenmonoxid m	kg	3.03E-05	7.73E-05	0.000139	0.000146	1.86E-05	2.50E-05	
	CO Kohlenmonoxid p	kg	0.0747	0.000314	7.71E-05	0.00774	7.58E-06	3.54E-05	
	CO Kohlenmonoxid s	kg	0.000453	0.00141	0.000126	0.00142	5.30E-05	0.000193	
	CO2 Kohlendioxid m	kg	0.0135	0.0412	0.0647	0.0699	0.0073	0.0114	
	CO2 Kohlendioxid p	kg	0.975	0.0342	0.00517	0.174	0.00161	0.00518	
	CO2 Kohlendioxid s	kg	0.39	5.03	0.0591	4.91	0.0854	0.809	
	Cr Chrom m	kg	5.32E-10	3.65E-09	5.74E-09	3.86E-09	7.99E-11	5.98E-10	
	Cr Chrom p	kg	3.88E-08	1.77E-08	3.18E-09	1.77E-08	7.04E-10	2.98E-09	
	Cr Chrom s	kg	2.76E-08	4.82E-07	4.51E-09	6.65E-07	1.14E-08	8.09E-08	
	Cu Kupfer m	kg	1.15E-07	3.44E-07	5.10E-07	8.11E-07	6.36E-09	5.56E-08	
	Cu Kupfer p	kg	1.11E-08	3.50E-08	1.64E-09	2.55E-08	8.37E-10	5.81E-09	
	Cu Kupfer s	kg	1.02E-07	1.03E-06	2.88E-08	1.82E-06	2.28E-08	1.71E-07	
	Cycloalkane p	kg		0	0	0	0	0	0
EQ	Dichlormethan p	kg	1.27E-09	4.11E-09	5.54E-11	1.16E-07	2.68E-11	3.80E-06	
	Dichlormonofluormethan	pkg	4.44E-08	3.17E-08	6.46E-09	3.07E-07	3.65E-08	5.43E-06	

MINES PARIS ARMINES

- www.ecoinvent.ch (Switzerland, hundreds of materials and processes)
- www.ivam.uva.nl/uk/ (The Netherlands, data base compatible with the SIMA PRO LCA tool)
- www.inies.fr (France, no process and fewer materials : concrete blocks, timber, gypsum, PVC tiles, aluminium, polystyrene, reflecting insulation...)



Aggregation in environmental indicators, examples

environmental theme	unit				
energy consmption	MJ				
water consumption	m ³				
depletion of abiotic	10^9 (1/1 billion), dimensionless, calculated by dividin				
resources	used resources by known resources				
waste creation	tons				
radioactive waste creation	dm ³				
global warming	ton CO ₂ equivalent				
depletion of the ozone layerkg CFC11 equivalent					
acidification	kg SO ₂ equivalent				
eutrophication	kg PQ4 ³⁻ equivalent				
aquatic ecotoxicity	m ³ of polluted water				
human toxicity	kg, human weight				
photochemical oxidant	kg C ₂ H ₄ equivalent				
formation					
malodorous air	m ³ of contaminated air (ammonia is used as a reference				

Indicators, example : contribution to climate change

Source : school in Les Houches

Global Warming Potential depends on optical properties of gases equivalent CO₂, over a 100 years duration • $GWP_{100} = kg CO_2 + 25 x kg CH_4 + 320 x kg N_2O$ + $\Sigma GWP_i x kg CFC ou HCFC_i$ effect (potential) and no impact (real)

Contribution to acidification

- Acidification Potential (eq. SO₂ or H+)
- Potential effect (real impact depends on background concentration)

Contribution to eutrophication

Photo : Halte aux marées vertes

- Eutrophication Potential (eq. PO₄³⁻)
- Increase of a natural phenomenon
- Potential impact (real impact depends on dilution, e.g. greater in a small lake than in a large river)

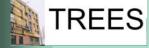
Air quality and ozone

REES

Source : Frederic Cherqui, Doctorate thesis

- ozone and altitude, 2 different problems :
- Stratospheric level (30 km), Ozone depletion potential (eq. CFC-11)
- Tropospheric level (ground level), Summer smog (photochemical ozone formation), eq. C₂H₄

Critical volumes method


- maximum tolerable concentration Cm at which 95% of individuals are preserved in water (kg/m³)
- critical volume (m³) = Emissions / Cm
- aquatic ecotoxicity indicator :
 - Σ critical volumes (m³ of polluted water)
- same method for terrestrial ecotoxicity
- Human toxicity : dose instead of concentration, e.g. threshold = dose at which the risk of cancer is 1/10, 000, average human weight, planetary average and not local indicator

Other critical volume indicator : odours

- Odours, detection threshold = concentration Cs at which 50% of a representative sample detects the product
- critical volume = Emission / Cs
- Odours indicator (m³ of polluted air) =
 - Σ critical volumes

Primary energy

- 1 kWh electricity needs more energy to be produced than 1 kWh heat (related to the efficiency of electricity plants and grid)
- The primary energy indicator allows different types of energy to be integrated on a homogeneous basis
- Upstream processes should be included (e.g. extraction and transportation of gas) otherwise displacement of pollution would not be accounted (e.g. replacing a boiler by electric heating reduces emissions inside a building but increases them upstream in electricity plants)
- Higher heating value is preferable
- Renewable energies are preferably included

Other indicators

- **Exhaust of resources, for instance :**
 - Σ Mi / available reserves i
- ▶ Water consumption, e.g. expressed in m³
- Produced waste, e.g; expressed in tonnes
- Radioactive waste, dm³

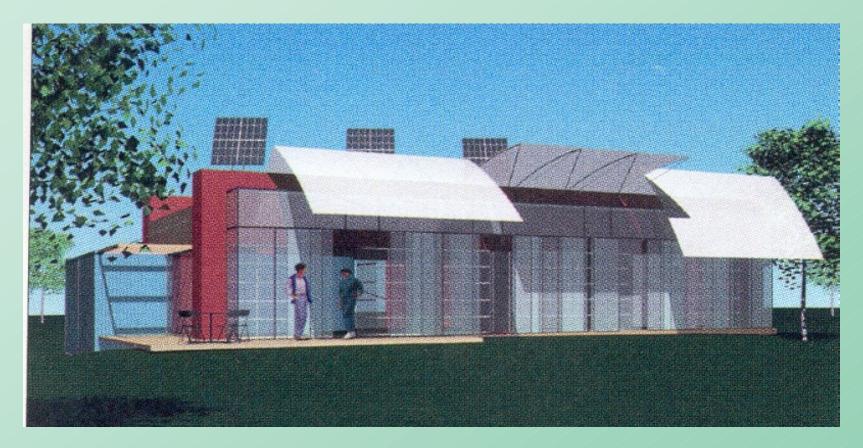
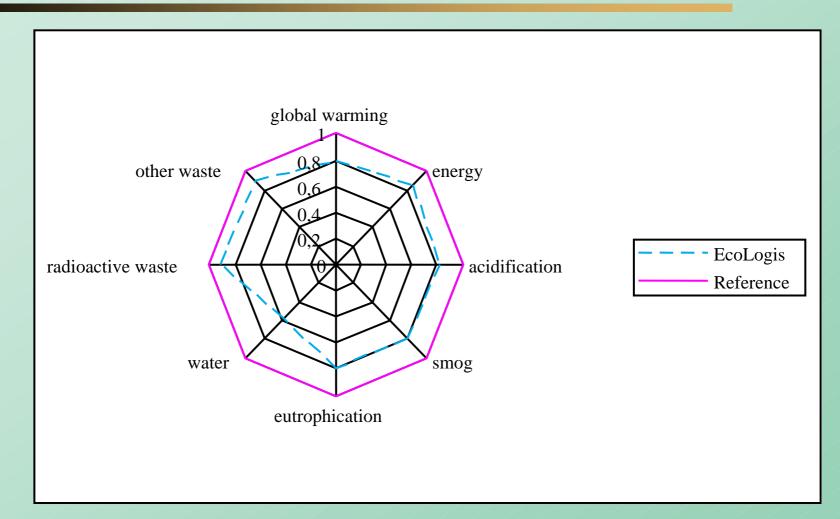


Photo : PNUE

Example result, EcoLogis exhibition in Paris

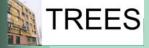


Impacts of this innovative project have been compared To a standard house in the same site

EcoLogis exhibition, comparison with a reference

Each axis corresponds to an indicator. The reference value is 1 and relative values are given for the project, e.g. the contribution to global warming is reduced by 20%

Normalisation


- Collect average impact per person and year, e.g. 13 tons CO₂ per person and per year in Europe
- Divide the indicator value by this average in order to derive normalised values in equivalent persons
- Example : if the CO2 emissions are 1,300 tons for a building, the normalised value is 100 eq. Persons
- Normalising all indicators for which average data is available helps to define priorities (in general, higher priorities for higher normalised values)

Limits of the approach

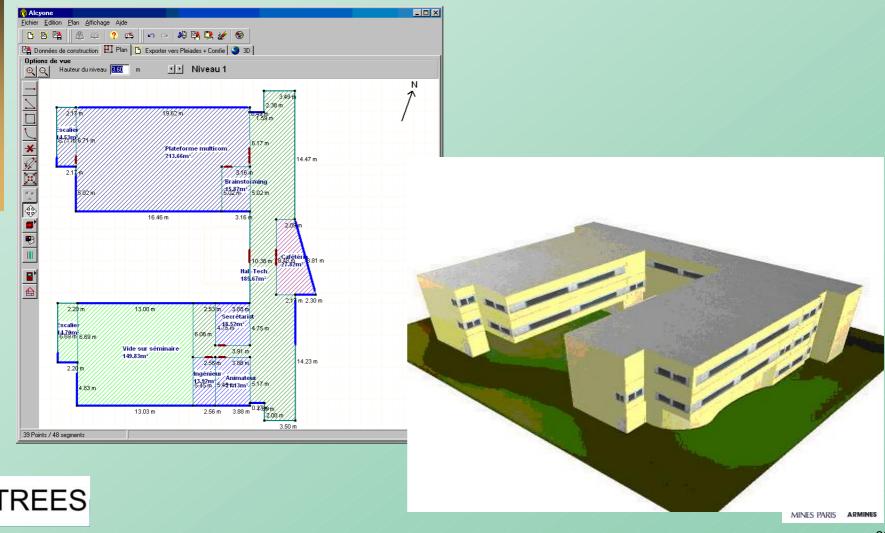
- uncertainties concerning data (inventories) and indicators : for instance, the global warming potential (GWP) of other gases than CO2 is known with 35% uncertainty
- processe like electricity production may vary -> one year functional unit corresponding to near future
- processes occurring at the end of the building life cycle difficult to foresee -> scenarios and possibly probabilities
- multi-criteria decision making -> define priorities in agreement with concerned actors (owner...)

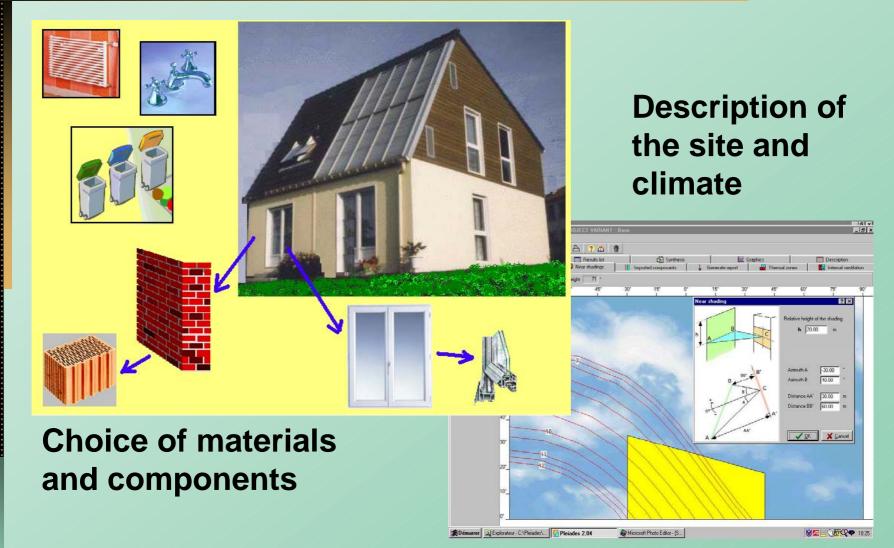
Work performed in the frame of the PRESCO European thematic network

Objectives of this work :

- Assist a more environmentally friendly approach in building design
- Exchange between tool developers
- Benchmarking and intercomparison
- Definition of a common baseline for assessment methodologies

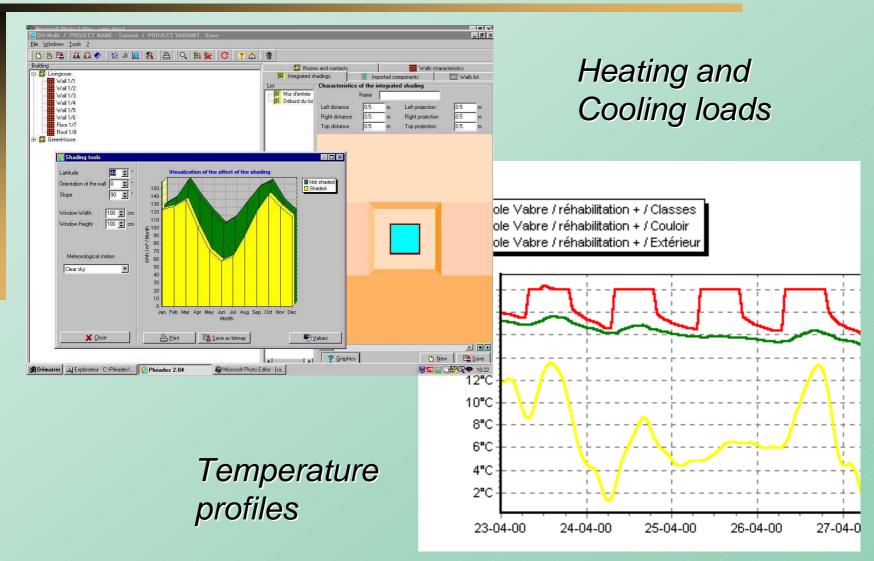
Participants and tools


- ► W/E, NL, ECO-QUANTUM
- **EMPA, CH, LTE OGIP**
- ARMINES, F, EQUER
- BRE, UK, ENVEST 2
- VTT, Fi, BECOST
- ► CSTB, F, ESCALE
- IBO, A, ECOSoft
- ASCONA and IFIB, D, LEGEP



PRESENTATION OF EQUER, www.izuba.fr

First step : 2D – 3D Description using ALCYONE


Building model

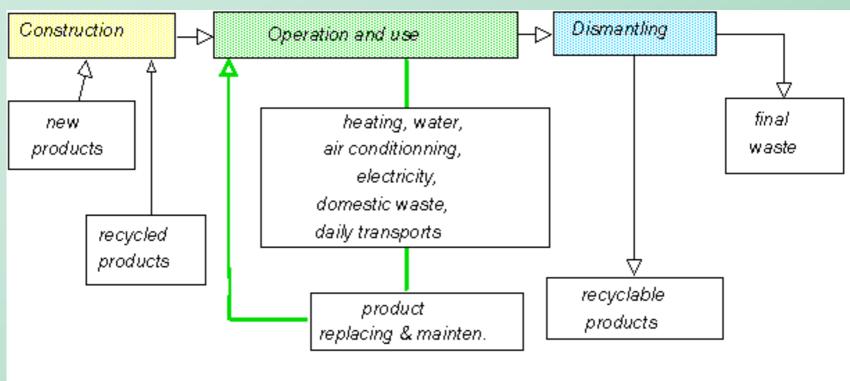
Link with thermal simulation, COMFIE

Equer, example input window

🚍 Equer	
<u>Fichier</u> <u>?</u>	
📴 Transport 🕰 Eau 💡	Energie 💱 Déchets 河 Matériaux 🌞 Calcul 🕡 Graphiques 🍛 Comparatif
Prendre en compte le transport quot	tidien des occupants
Distances	
	Distance domicile-commerce 10000 m Défaut : Urbain Défaut : Banlieu
	Distance au réseau de transport en commun 5000 m
	Défaut : Rural Défaut : Isolé
	Distance domicile-travail m
Usagers	
	% des occupants effectuant le traiet journalier 0
Mode de transport	
	✓ Présence de pistes cyclables
	Mode de transport journalier
Type de site	

TREES

Equer, example data window

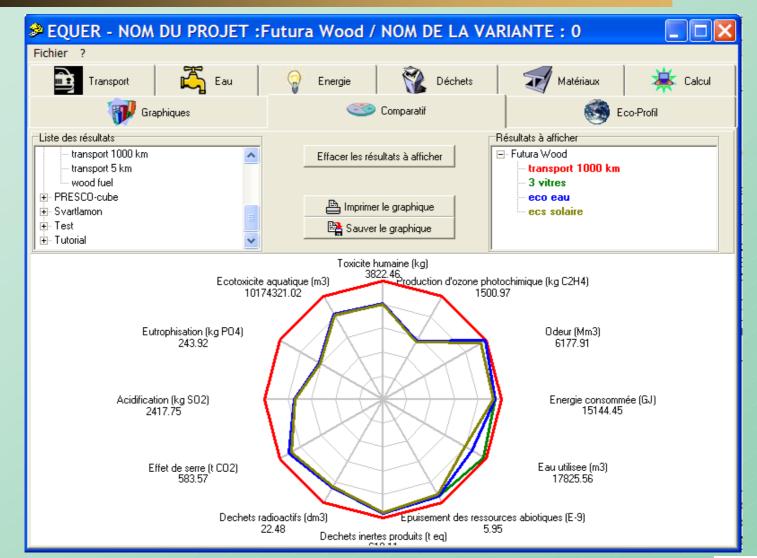

🔗 Equer				_	
Fichier ?			_		
Gra	phiques	Saisie caractéristiques	×	Eco-Profil	
		Caractéristiques			
Transport	F F	Nom Béton B25		fatériaux 🛛 🐺 C	alcu
Vera	🔽 Simpli	Catégorie Mat			
	j∳ oimpi	Etape FAB			
Real B	Surplus d	Procédé N		: 30 ans	
To D	Distance	Unité kg		nents 15 ans	
	Distance	Pollution		e de la complete la la la complete de la complete d	DI-
	Distance	1 Olddorf		ondance avec la bibliothèque	Fie
Nom	Catégorie	Effet de serre (kg CO2)	0.133000	Unité	
Béton B25	Mat	Acidification (kg SO2)	0.000364	kg	_
PVC double vitrage	J Com	Energie consommée (MJ)	1.000000	m2	
Isolant transparent 10 cm	Com	Eau utilisee (litres)	0.688000	m2	
Isolant transparent 5 cm	Com	Dechets inertes produits (kg eq)	0.007630	m2	
Acier de construction	Mat	Epuisement des ressources abiotiques (E-15)	0.240600	kg	
Polystyrène	Mat	Eutrophisation (kg PO4)	0.000046	kg	
Bois - planche	Mat	Production d'ozone photochimique (kg C2H4)	0.000034	kg	
Polyéthylène faible densité	Mat	Ecotoxicite aquatique (m3)	0.000003	kg	
transport M 28t	Trs	Dechets radioactifs (dm3)	tkm		
transport M train	Trs	Toxicite humaine (kg)	0.000964	tkm	
Polystyrène	Mat	Odeur (m3)	0.000000	kg	
PVC dur	Mat			kg	
Polyyéthana	Max Mark		X Fermer	ka	

Oekoinventare 1996 data base (ETHZ) New version using www.ecoinvent.ch

Life cycle assessment tool, EQUER

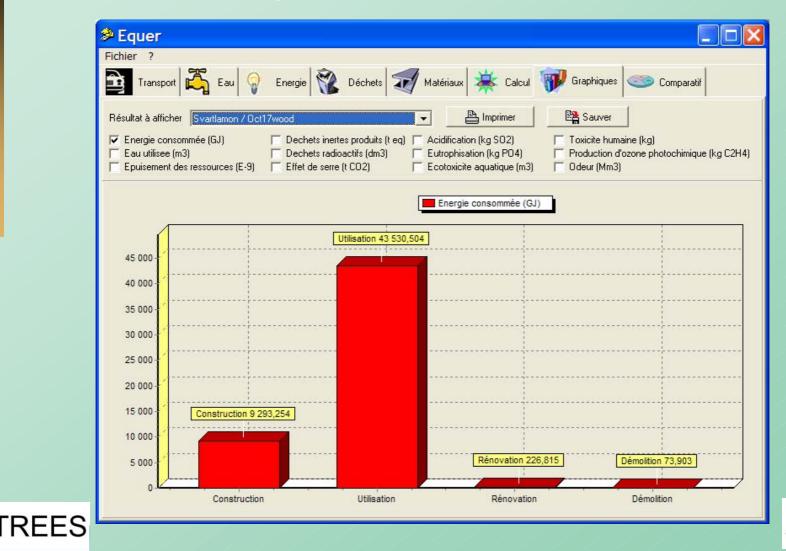
Simulation with a yearly time step

Simulation of the life cycle, accounting impacts year by year


EQUER, example quantitative results

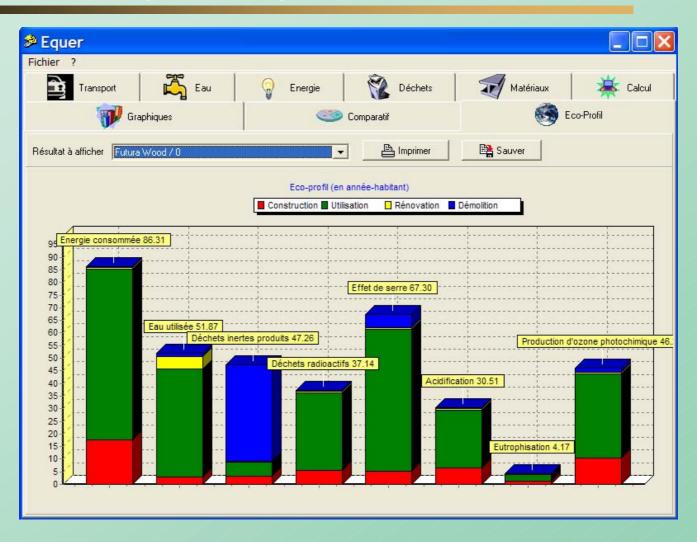
🔚 Equer					_ 🗆 ×
<u>Fichier 2</u>					
Transport Eau Energie Déchets Mat	tériaux Calcul Comp	paratif			
Durée de l'analyse	ans ans			Equality of	console
Lancer le calcul				Equero	onsole
Résultat à afficher					
Impact	Construction	Utilisation	Rénovation	Démolition	Total
Energie consommee (MJ)	1010491.46549	36280678.88702	319335.12472	111654.34319	37722159.82042
Eau utilisee (m3)	940.97307	55194.76972	3511.86744	2159.00561	61806.61584
Utilisation des ressources abiotiques	0.000000000	0.000000000	0.000000000	0.000000000	0.00000
Dechets sterils produits (t eq)	60858.24260	42.73526	16601.10105	591113.34123	668615.42014
Dechets radioactifs (dm3)	0.21719	0.08402	0.00086	0.00042	0.30249
Effet de serre (kg CO2)	113903.78428	279082.45213	14912.05492	11638.59898	419536.89031
Acidification (kg SO2)	528.28276	753.09125	48.73926	45.75189	1375.86516
Eutrophisation (kg PO4)	70.65370	64.86307	6.34764	8.34285	150.20726
Ecotoxicite aquatique (m3)	1836042.29954	5428963.49935	521158.06157	359811.60214	8145975.46260
Toxicite humaine (kg)	205773184.20386	963.61531	411545124.88232	64.00529	617319336.70678
Production d'ozone photochimique (kg C2H4)	457.92271	392.19398	27.92867	48.25344	926.29880
Odeur (m3)	418249687.33301	3924453154.07812	12723086.42888	4484683.18819	4359910611.02820
	1				

EQUER, example comparison of alternatives



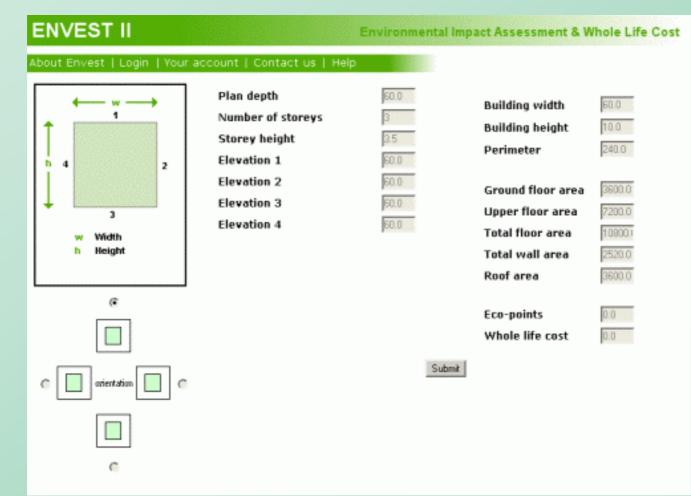
Contribution of life cycle phases

Construction, operation, renovation and demolition



EQUER, example eco-profile

TREES



Normalisation -> same unit for all indicators : equivalent-person-year

ENVEST, United Kingdom

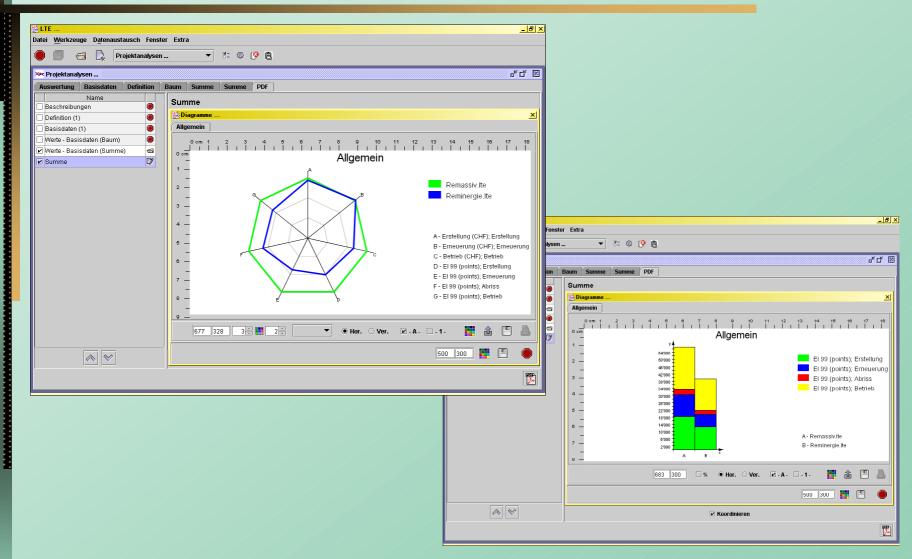
www.bre.co.uk/services/ENVEST.html



Envest, normalized profile

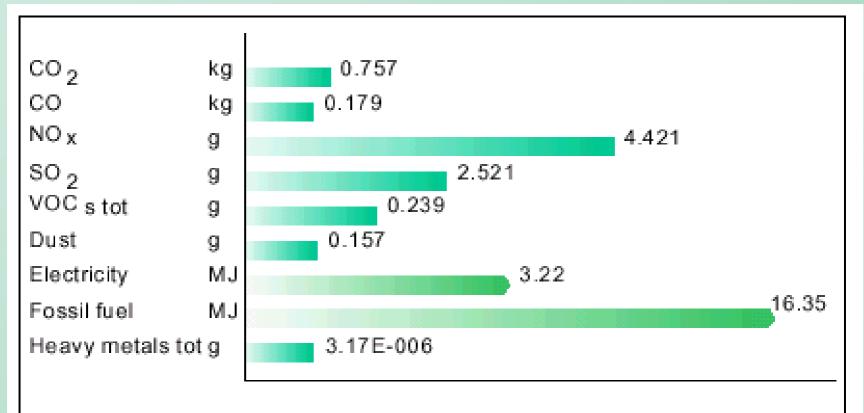

Issues	One UK Citizen	Normalised Data
Climate Change	12270 kgCO2 eq (100yr)	0.022
Acid Deposition	58.88 kgSO2 eq	0.037
Ozone Depletion	0.28595 kgCFC11 eq	0
Pollution to Air: Human Toxicity	90.7 kg.tox	0.036
Pollution to Air: Low Level Ozone Creation	32.23 kg ethene eq (POCP)	0.0024
Fossil Fuel Depletion and Extraction	4.085 toe	0.012
Pollution to Water: Human Toxicity	0.02746 kg.tox	0.000021
Pollution to Water: Ecotoxicity	837600 m3 tox	0.0000013
Pollution to Water: Eutrophication	8.006 kg.PO4 eq.	0.022
Minerals Extraction	5.04 tonnes	0.2
Water Extraction	417600 litres	0.0036
Waste Disposal	7.194 tonnes	0.015
Transport Pollution & Congestion: Freight	4140.84 tonne.km	0.062

LTE OGIP, http://www.ogip.ch/


Bauwerksteil definieren				_ 🗆
<u>D</u> atei <u>H</u> ilfe				
- Bauwerksteil - Bezeichnung		- Eigenschaften		
Bauteilart E4 Wand	Referenzme	-	Referenzeinheit	m2 🔻
				m2 💽
Anwendererweiterung DZ-01 Generieren	k-Wert	0.000		
Identifikator E4 - DZ-01 - 2	g-Wert	0.000		
Beschreibung	Glasanteil	0.000	Vorwerte	
Kataloge	LFilt	er		
Norm-BEK O Freie-BEK O Alle-BEK O Projekt-BEK O S		# ###.###:		Filter anwenden
		+ ++++.++++: <u></u>		Filter anwenden
	EKG-Grafik	Schichtung des Bauw	orkatoila	
T - Umgebung	ENG-Grank	Schichlung des bauw	erkstells	
🛨 📷 M2 - Schutzelemente	Nach innen	ID-Nr.	Suchtitel Menge	e m2K/₩ (▲
🕀 🎆 M3 - Bodenbeläge		1 M4 111.111	1x Tiefarun 1.000	
🖂 🏧 M4 - Wandbekleidungen		2 E4 141.123	Mauerdicke 1.000	
☐ ∰ 100 · Wandbekl.:Verputze Anstriche ☐ ∰ 110 · Verputze m.Anstrich			Plattendick 1.000	-
	Nach außen			
📄 🍓 100 - Untergrund künstl. Steine		4 E4 141.122	Mauerdicke 1.000	-
📃 🥁 110 - Gips-Kalkgrundp.miner.Dec		5 E4 311.112	1x Organosi 1.000	
📑 111 - 1x Tiefgrund,1x Dispersiol	Übernehmen	1	Ausson	
112 · 2x Dispersion · m2 · 35,-	Löschen			
📴 113 - 2x Silikon - m2 - 39,-	20001011			
🛨 💼 120 - Gips-,Kalkgrundputz,min.D (🛨 💼 130 - Gips-,Kalkgrundputz,min.D (Grundputz, mineralisch	her Deckputz und Anstric	:h. 🔺
Image: Tot + dips: (kakgranapdaz) in tot + dips: (kakgranapdaz		 Untergrund künstliche platten, Wände eben. 	Steine sowie Dämm-od	er Putzträger-
🕀 📷 300 - Untergrund Beton			undputz, Putzdicke mm 1	0. Deckputz au
🛨 🚞 400 - Untergrund Beton Treppenhaus 👻			ementzusatz, Korngrisse i	mm 1,6
		bis 2,0, abgerieben. 1 Anstrich Tiefgrund, 1	1 Anstrich Dispersionsfart	ne matt
	Volltext	i i industri i orgidita,		•

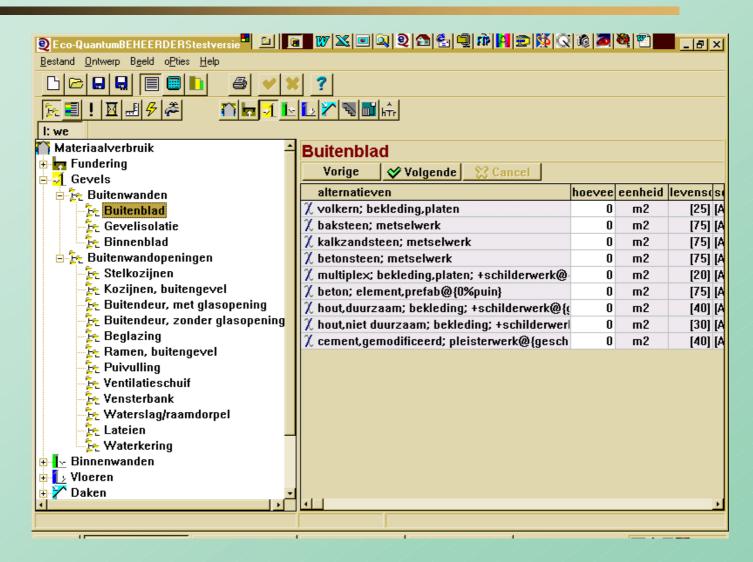
INPUT

LTE OGIP, OUTPUT



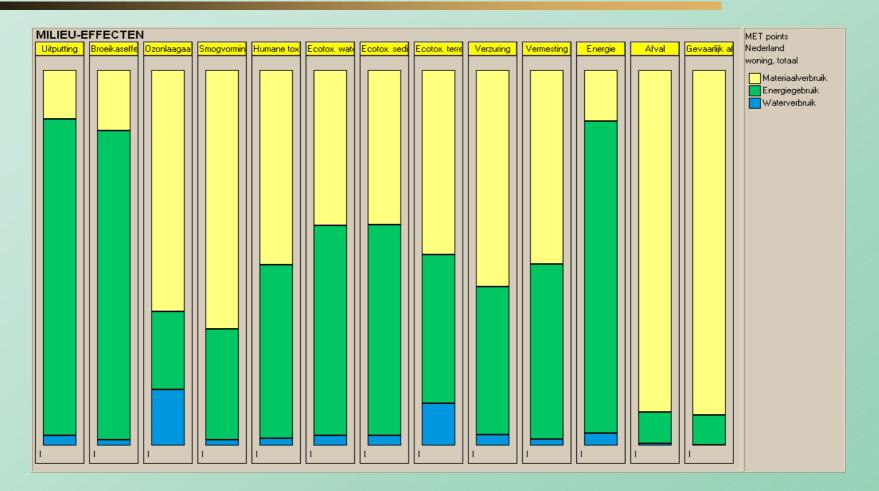
49

BECOST, Finland : http://www.vtt.fi/environ



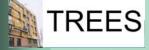
Elinkaarianalyysi voidaan esittää ympäristöprofiilina - toiminnallisen yksikön vaikutuksena ympäristöön.

ECO-QUANTUM, The Netherlands, www.ecoquantum.nl



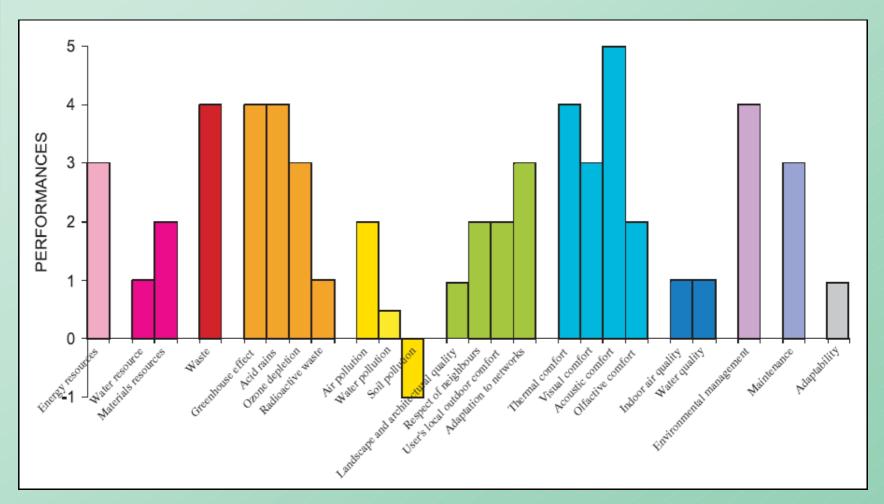
Eco-Quantum, output

Contribution of different elements (floors, walls...)



12 environmental effects, 4 scores, 1 indicator

ECOSoft, Austria


В		С	D	E	F	G	Н		J	К	L	М	N	0	P
Baustofftal	elle	Baustoffe.xls			-	Eint	raq lösche	en							
Kategorie		Wählen Sie aus			Ŧ		Update								
Baustoff		Wählen Sie aus			·	s	peichern								
	_														
Schicht N		Benennung der Schicht	Katalog	Dicke	Anteil	Dichte		Nutz- ungs- dauer	global warming (GWP100)	ozone layer depletion (ODP)	photo- chemical oxidation	acidifi- cation	eutrophi- cation	PEI nicht erneu erbar	Pl erne erb
				DICKE	Anteil %	Lichte kg/m³	e kg	Jahre	· /	LUDP) kg CFC-11 eg		cation kg SO2 eg.		erbar MJ	erD-
		osputz	Baustoffe.xls	0,005	100%	1100	5,5	80	0,583	1,3915E-07	0,00005104	0,00159	0,000173	11,02	0,
		chlochziegel hochporosi	Baustoffe.xls	0,25	100%	750	135	80	33,750	0,000010449	0,0016065	0,1404	0,010679	370,74	6,
		irtel	Baustoffe.xls		100%		10	80	2,080	0,000000753	0,000159	0,00676	0,000673	15,78	0,
		neralischer Kleber	Baustoffe.xls		100%		5	80	1,040	3,765E-07	0,0000795	0,00338	0,000337	7,89	0,
		zweichfaserplatte	Baustoffe.xls	0,17	100%	210	35,7	80	-34,568		0,0088298		0,011127	682,55	731,
		asfaserarmierung	Baustoffe.xls		100%		0,2	80			0,0000228	0,001904	0,000149	6,50	0,
	7 Sil	ikatputz	Baustoffe.xls	0,01	100%	1800	18	80	3,744	1,3554E-06	0,0002862	0,012168	0,001211	28,41	1.2
	_														
		trachtungszeit	80						6,941	3,13138E-05	0,01103484	0,409795	0,024348	1122,89	740,
	Ma	iterialkosten													
	Ar	peitskosten													
	Ge	samtkosten	0												
1															

ESCALE, France

combined with INIES and SIMA-PRO

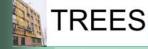
Notes between 0 and 5 for 12 criteria

LEGEP, Germany, www.legep.de

TREES

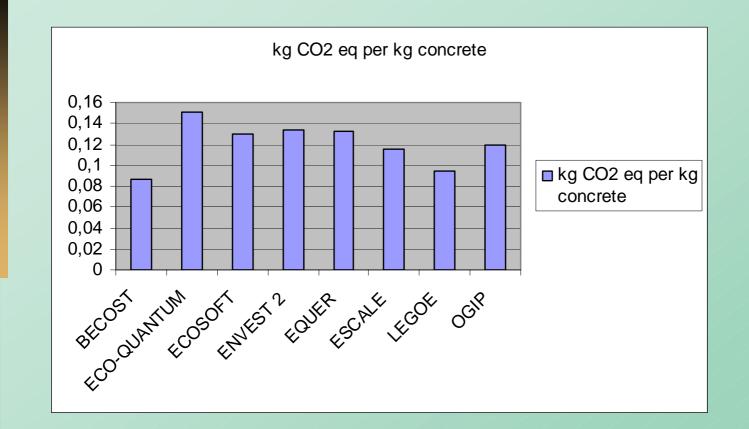
LEGOE PRESCO	Deveelen				_
– 🗐 🖌 Folgekosten	- Berechnungsgrundla Lüftung	_{ge} natürlich			
🖕 🚽 Laufende Kosten	Lunung	naturnen			
📄 🚽 Jährliche Kosten	Luftdichtheitsprüfun				
🗆 📕 🧹 Monatliche Belastung	Europerar	y Nem			
🖕 🚦 Kostengruppen	Photovoltaik	Nein	Solarkollektoren N	ein	
🕂 - ີ ເຊິ່ 🖌 Kostengruppen ge					
– 📥 🗸 Absolute Werte	Regenwasser	Nein			
- 📔 🗸 Kostengruppen ge					
– 👖 🕴 Absolute Werte	Wärmeerzeugung	Strom			
- 🔁 🖠 Kostenstellen					
L Absolute Werte	Rechenverfahren	Energieeinsparverord	nung 2002 (Vereir	nfacht)	
– – ີ ໂຊ 🗜 Positionen					
Värme / Energie	Ergebnis				
ြ ဦခို 🖌 Hüllflächen	Jahresheizwärmebe	darf		0,93	kWh/Jahr
🖨 🚧 🏑 Übersicht	Automatic	ald (asias increase in base) where DUM	V/ 4701 10	La aa	
🚬 🛄 🗸 Monatsbilanz	Anlagenaurwandsz	ahl (primärenergiebez.) nach DIN	V 4701-10	3,23	
– 🐮 🗜 Projektspezifische Dicken	spezif. Transmission	nswärmeverlust 2,97	Maximal zulässig	0.40	
- Es V Details	spezii. Hansmissior	iswannevenust [2,97	Maximai zulassiy	0,43	wy(mix)
- 🎒 🗸 Wärmeflussdiagramm (E	Primärenergiebedar	f QP" 2308,18	Maximal zulässig	151,68	- kWh/m² Jahr
– 🇃 🗸 Wärmeflussdiagramm (P			Maximar Eardoorg	Troutee	
	AH A 1				
Prozentualer Anteil	Alle Angaben				8
Gesamter Verlust	kWh/m² Jahr				
- ∰ √ Wasserfluss		1.04			
		Lui	^{tung} 3000 📻 –		
Strom					<u> </u>
– 🗞 🖢 Wasser			2400	Innerer Gew	inn
- 💫 🖠 Warmwasser			2200		
- H Heizung	and the second		1800		
– 🛉 🕴 Prozentualer Anteil					
- Gesamter Bedarf		4-1	1200		
– Tendenergie / Primär		Anlagenverluste	und 1000		
– 🔲 🗸 Energiekosten		Primärenergiebereitstell	lung 800		
– 🗐 🗸 Amortisation			400	Grenzwert	
🗆 📲 🍹 Kosten		Transmis	sion 200	51 Primärenerg	iebedarf
Ökologie		Verle		Gewinne	
🔁 – 🖠 Stoffmasse	States States				
T 🕂 ຊື່ຮູ 🖌 Übersicht	ni	e Energieeinsparverordı	ound wird nicht orf	1111 1	
– 📥 🗸 Übersicht grafisch	Di	e chergieenispur verorui	ing wird ment ern	unt	
					PLACE S OF THE A OWNER STOLEN

55


Steel reinforced concrete, 20 cm thick Electric heating (E.U. electricity mix) 50 years Transport Construction End of life

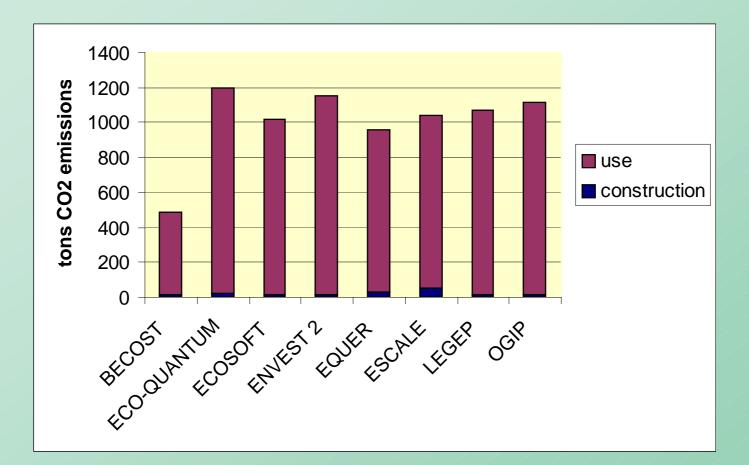
Main assumptions (1)

- Transport of materials
- Quantity and management of construction waste
- Electricity production and transport
- Occupants related impacts (e.g. water consumption, domestic appliances, home-work transport, domestic waste)


Main assumptions (2)

- Energy calculations (EN 832, simulation)
- Refurbishment processes
- Demolition processes
- Transport of waste
- End of life processes

Example, LCI of concrete



Different qualities, cement content 120-300 kg/m³ Different processes (prefabricated) and energies Different indicators : IPCC, CML... + alloc. (ash)

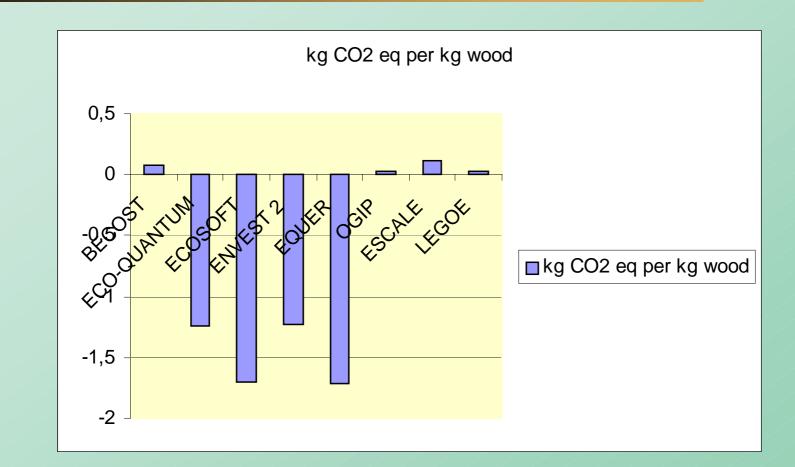
Results for climate change

+ / - 10% discrepancy except Becost (use of Finnish electricity mix)

Uncertainties, discrepancies

- Quantities (internal / ext. Dimensions)
- Steel % in reinforced concrete 0.83 to 3%
- % surplus during construction (0 to 10%)
- Transport of materials : 0 to 50 km
- Life span of materials and components
- Transport of waste : 0 to 20 km
- End of life : landfill

Second study : FUTURA House

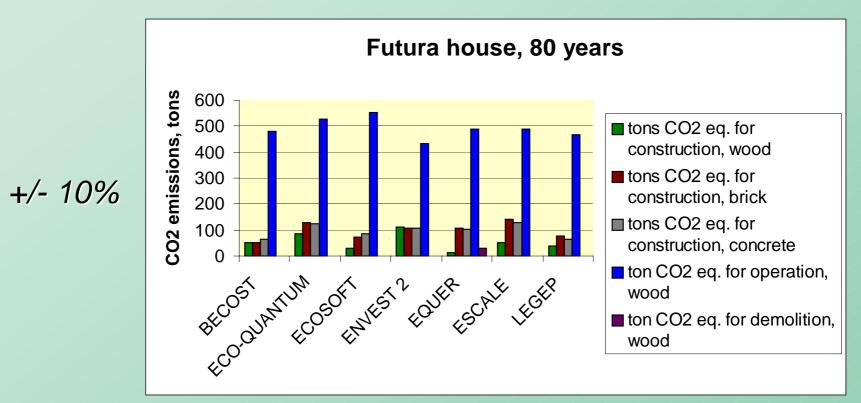


Single family house, 210 m2, gas heating, 80 years

LCI of wood production

2 groups of tools : 0 CO₂ balance versus storage

Comparison of LCA tools



TREES +- 10% discrepancy over the life cycle

Comparison of wood, brick and concrete

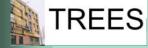
constructions, CO₂

CO₂ emissions with wood <= other materials CO₂ with brick > CO₂ with concrete ? yes for 4 tools, no for 3 tools

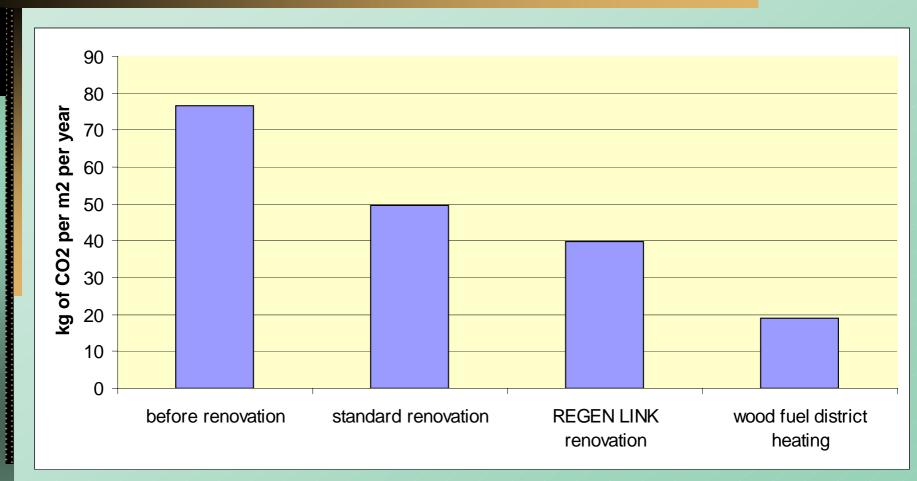
Examples of good practice

- scope, assumptions and methodology should be transparent
- recent and specific data with consistent methods
- promote the use of recycled materials + recycling at the end of the life cycle
- default value for transport to site and for each type of waste treatment process (incineration, landfill, recycling, ...), product specific values if available data
- water : should be included in the results --> can promote water saving measures
- Aggregated weighting factors (e.g. ecopoints) not recommended

Example LCA application, renovation of a social housing block near Paris

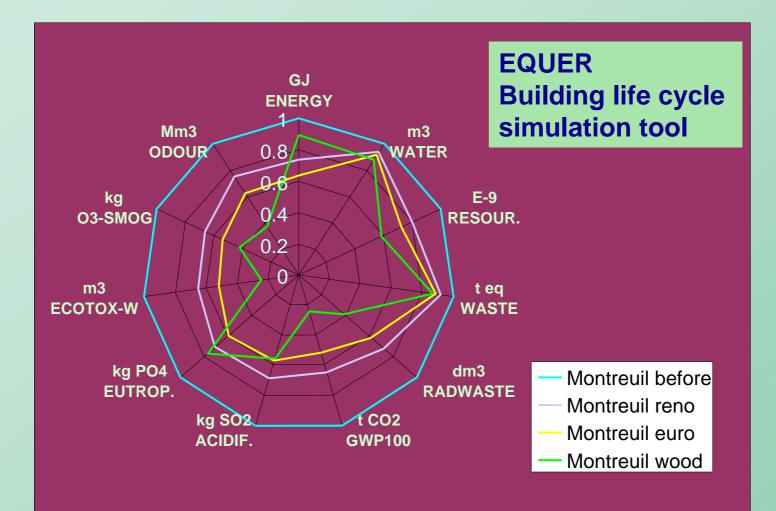


Construction : 1969, not insulated, single glazing Heating load : 150 kWh/m2/an

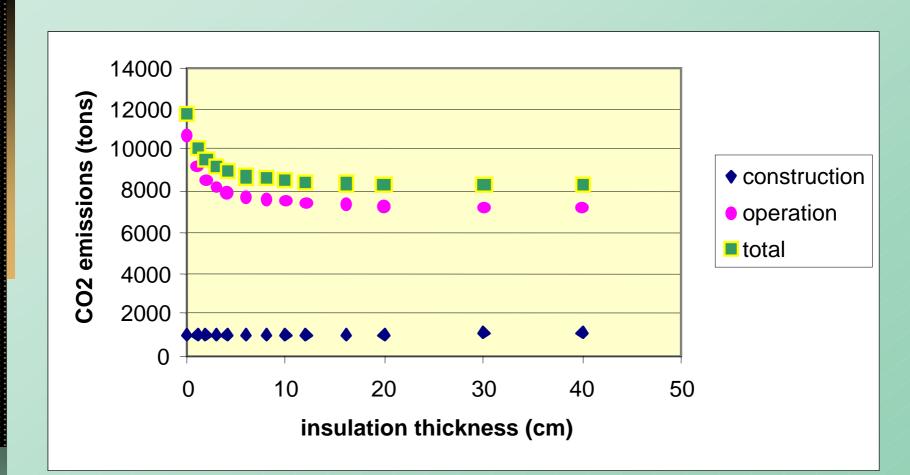

Comparison of alternatives

- Before renovation
- Standard renovation : 6 cm external insulation, standard double glazing
- European project REGEN LINK : 10 cm insulation, low emissivity glazing, moisture-controlled ventilation, air preheating in glazed balconies, low flow rate sanitary equipment
- Use of biomass in district heating

Results of life cycle assessment, EQUER

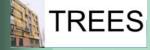


CO₂ emissions per m² and per year


Results of life cycle assessment, EQUER

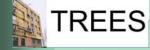
Facade insulation

Life cycle assessment, example : CO₂ emissions Optimum 20-40 cm (CO₂), 10 cm (cost)


behaviour on environmental performance

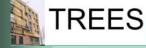
2 building designs

Standard house in France


Higher environmental quality house

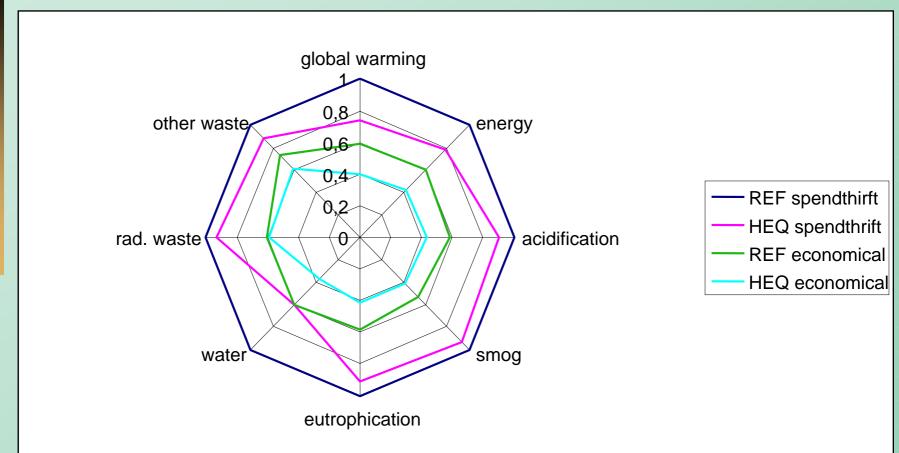
- 2 types of occupants' behaviour
- « Economical »
- « Spendthrift »

Component	Reference (REF.)	"Higher environmental quality" (HEQ)
insulation	8 cm internal	12 cm external
glazing area	10 m ² , north oriented	25 m2, south oriented
controlled ventilation	without exchanger	heat recovery, efficiency 0.5
sanitary installations	standard	reduced water flow rate (of 50%)
waste sorting equipment	only for glass	for paper and glass



2 types of occupants' behaviour

Parameters	"Economical"	"Spendthrift"
Set point temperature	varying between 14°C and 19°C	21°C constant
Ventilation	0.5 ACH	1 ACH
Electricity consumption	150 W	300 W
Domestic hot water	40 l/person/day ^A	60 l/person/day A
cold water	80 l/person/day ^A	150 l/person/day ^A
urban waste	0.8 kg/person/day	1.5 kg/person/day
paper sorting	60% ^B	0%
glass sorting	80%	0%


^A divided by two for the "Higher environmental quality" case, due to the reduced flow rate.

^B 0% for the reference case as there is no paper sorting possibility.

LCA results

Design is not sufficient, information of residents about propper management is essential

Conclusions

- Life cycle simulation is operational, though only emerging and used by specialised architects and consultants
- LCA could be used to determine appropriate environmental targets according to a context, and to check the compliance of projects
- Environmental benefit from RE in buildings, materials become important with lower energy use
- Retrofit can be compared to rebuilding

