TREES

Training for Renovated Energy Efficient Social housing

Intelligent Energy - Europe programme, contract n° EIE/05/110/SI2.420021

Intelligent Energy Europe

Section 1 Techniques 1.5 Photovoltaic systems

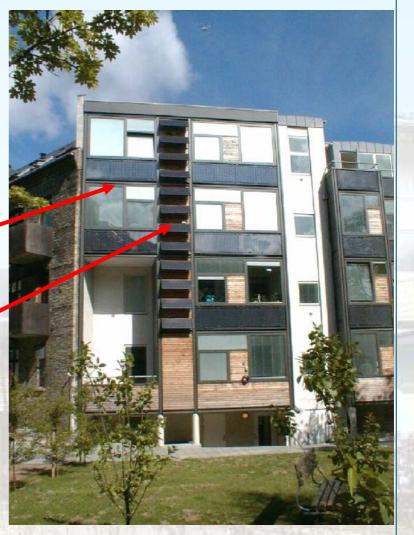
Annemie WYCKMANS Sintef – NTNU

Main issues and definitions

- Well-insulated houses have reduced energy need but still require electricity for lights, fans and other equipment
- Photovoltaic systems (PV) generate electricity from solar radiation, a renewable energy source, at the point of use.
- As the cost of fossil fuels steadily increases, PV becomes also economically attractive.
- Electricity produced by PV can be used on the spot, stored in batteries, or sold to the electricity distribution network.
- Mature technology with increasing demand worldwide.
- No noise, no moving parts, no emissions on-site.

Main recommendations

- PV replacing a traditional building element, e.g. roof or facade cladding, reduces investment cost & provides « free » electricity
- Wide range of off-the-shelf PV products in various shapes, colours, costs and efficiencies to match the building project.
- Design guidelines for PV system:
 - Access to solar radiation: horizontal orientation within due South +/- 45⁰, vertical tilt within 90⁰ minus site latitude +/- 45⁰
 - Access to building surfaces on which to install PV: roof, facade, balconies, glazing, solar shading, ...
 - Avoid shading by surrounding vegetation or buildings
 - Sizing of PV according to electricity needs
 - Electricity storage by means of battery arrays or electricity distribution



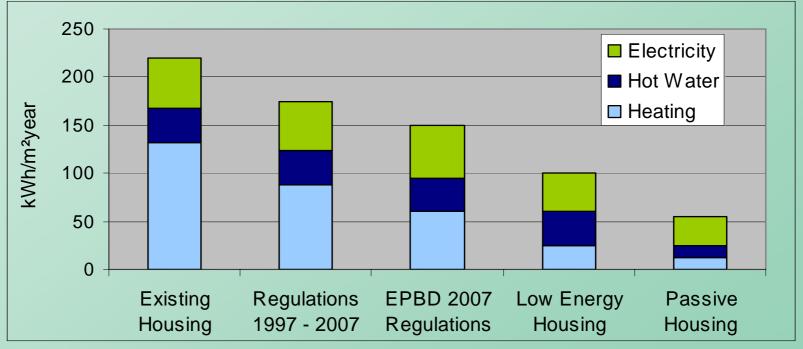
Example : The Yellow House (Aalborg, DK)

4 storeys, 8 apartments

- Built in 1900, renovated in 1996,
 with focus on solar energy
- 22,3 m² of PV panels:
 - Some tilted vertically for optimal integration with building facade
 Some with 30^o tilt off vertical axis for maximised solar incidence
 Electricity production:
 - ~ 30 kWh / m² per year
 - ~ 25 % of the electricity sold to the electricity distribution network

Picture: Jørgensen & Nielsen

Content


- PV application in housing
- PV cost benefit analysis
- Commercially available products & applications
- Design guidelines
- Case studies:
 - The Yellow House (DK)
 - Le Toit Bleu (F)
- Summary

Trends in housing energy use

- Reduced energy use per m²
- Changing energy use patterns

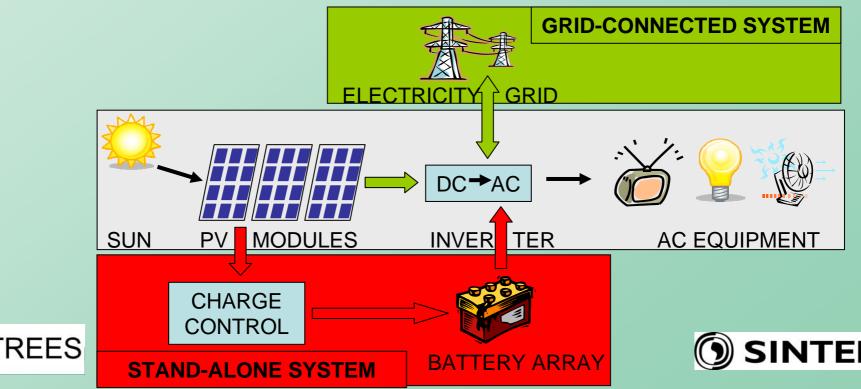
Energy use in Norwegian housing. Illustration: T.H. Dokka (SINTEF Byggforsk) EPBD = European Energy Performance in Buildings Directive

Reduced use of fossil fuels

 They become more expensive due to scarcity and increased environmental taxes.

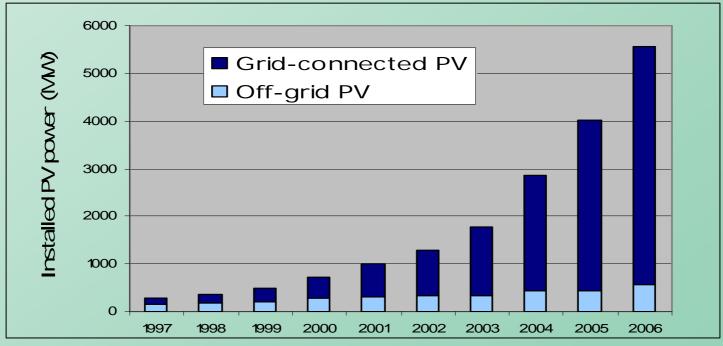
Reduced use of electrical energy

- Energy efficient lighting and equipment
- Low pressure drops in the ventilation system
- Low specific fan power
- Demand controlled heating, lighting, ventilation and cooling


Increased use of photovoltaics

- Using solar radiation, a renewable energy source
- More attractive economically and environmentally

- On-site electricity production from renewable source
- PV can be used to produce electricity as a
 - stand-alone system (not connected to public electricity grid)
 - grid-connected system (exchanging electricity with public grid)

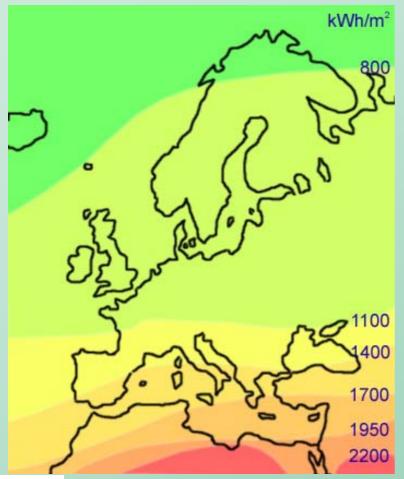


Mature technology with off-the-shelf products

Government support

 For national information regarding subsidies and other incentives, check http://www.iea-pvps.org

Expected growth 30% per year



Data: http://www.iea-pvps.org

PV cost – benefit analysis

Output related to solar radiation availability

TREES Solar radiation availability according to latitude

- Sahara: 2,500 kWh/m² per year
- Norway: 700 1,000 kWh/m² per year
- PV efficiency of commercially available silicium cell: 15-20%

Example:

- PV area = 20 m²
- PV output in Norway:
 - = 1000 kWh/m² * 15% * 20m²
 - = <u>3000 kWh</u>

PV cost – benefit analysis

Investment costs

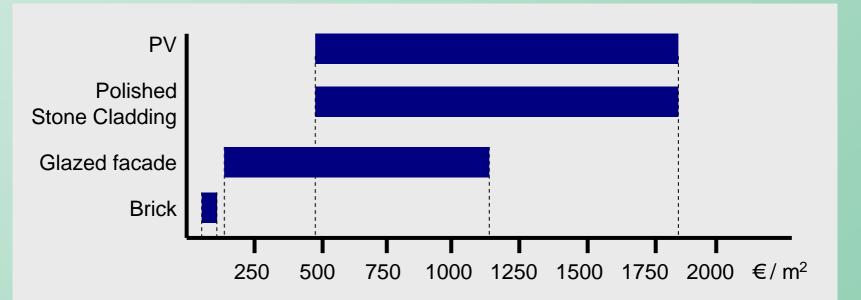
System purchase & installation

Off-grid: 8-9 € / W; Grid-connected: 4-5 € / W

- Incentives? Governmental programmes?
- Building displacement costs?
- Accessibility of components for maintenance & replacement?

Added value

- Local & environmentally friendly energy source
- Less dependent on fluctuations in electricity market
- Increased building value
- Increased rental value
- Modular
- Non-intrusive: no noise, no moving parts, no on-site emissions



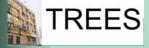
PV cost – benefit analysis

PV can be used as a multi-functional building material:

- As facade or roof element, and for daylighting and solar shading
- Provides free electricity
- May avoid upgrading of mechanical cooling systems

Comparison of capital cost for a range of building materials (illustration: Käthe Hermstad, SINTEF Byggforsk)

Commercially available products & applications


Types of commercially available PV cells

- Monocrystalline PV cells (~ 15% efficiency)
- Polycrystalline PV cells (~ 13% efficiency)
- Amorphous thin film PV (~ 7% efficiency)

Range of sizes, transparency & colour

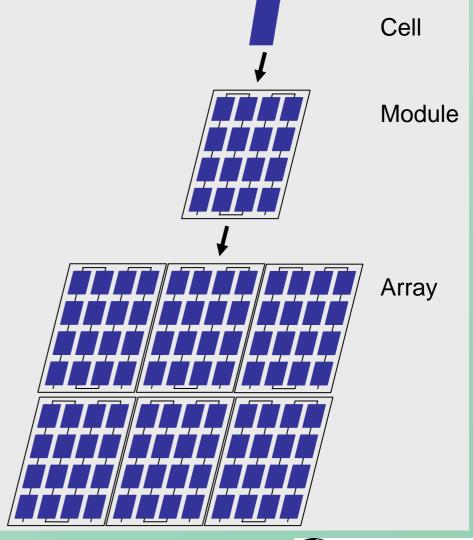
Photos: left © Marc Mossalgue / CLER; middle & right: Annemie Wyckmans

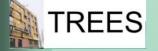
Commercially available products & applications

Туре	Module efficiency (commercial) [%]	Module efficiency	Embedded energy [MJ / m ² PV]	
		(laboratory) [%]		
Monocrystalline PV	13 – 18%	24%	5 600 – 24 000	
Polycrystalline PV	12 – 17%	20%	2 700 – 8 300	
Amorphous PV	6 – 9%	13%	1 010 – 2 750	

A comparison of performance criteria for PV cells.

Data: Danish Technology Institute & BCSE (2004) "The Australian Photovoltaic Industry Roadmap"

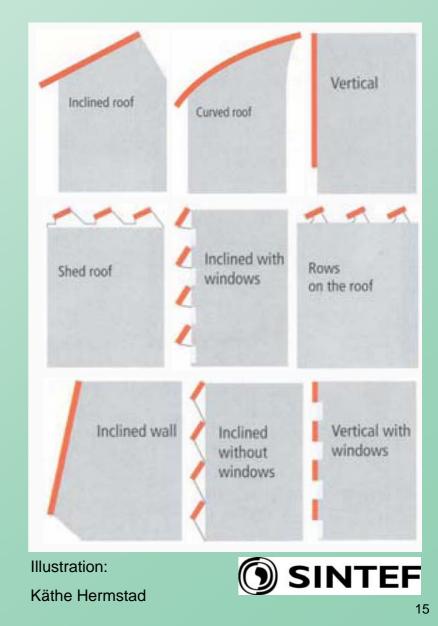




Commercially available products & applications

PV systems

- PV cells are connected in series (module) and parallel (array) to increase the voltage in the circuit
- The PV cell with the lowest output determines the output of the entire PV module.



ΈF

Commercially available products and applications

Design integration options:

- Roof & facade elements
- Daylighting, solar shading & passive solar heating elements
- Replacing building material, or mounted on top of existing envelope

Design guidelines

Orientation of PV modules

Optimal angle with regard to solar irradiation:

- Vertical: 90° minus latitude (+/- 45° if better fit with building design)
- Horizontal: due South (+/- 45° if better fit with building design)

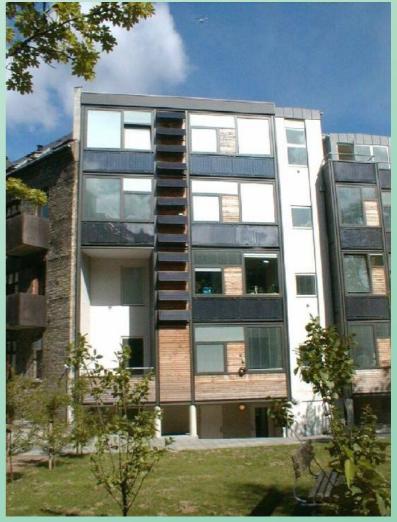
Example: the relative effect (%) of a PV system in Oslo

Vertical angle α	Orientation			
Δ^{α}	South	East / West	North	
90°	83	83	83	
60°	96	66	31	
30°	100	78	53	
0°	73	49	22	

Design guidelines

Shading effect

- PV cells are connected in series to increase the voltage in the circuit
- In a serially connected PV module, the cell with the lowest output determines the efficiency of the whole module
- Shading of single PV cells therefore reduces the efficiency of the entire module
- The shading effect can be reduced by connecting the cells in patterns with a similar shading problem



Renovation project:

 a 4-storey high building with 8 apartments built in 1900 in Aalborg, Denmark

► Aim:

 to use solar energy to reduce the overall energy consumption for space heating, ventilation, hot water and electricity by up to 70%.

Picture: Jørgensen & Nielsen

22,3 m² PV panels

Integrated in south facade

Some 30° vertical tilt

Optimal for solar irradiance

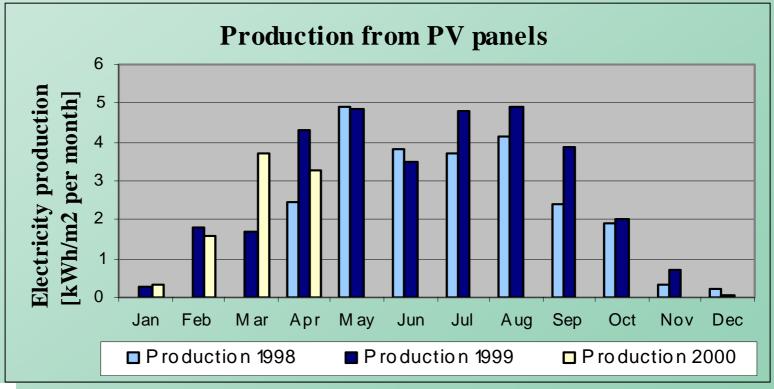
Some vertical panels

Integrated in solar wall

Lower efficiency due to extra layer of glass & non-optimal tilt
Picture:

Jørgensen & Nielsen

PV output


- Used in the house
- Sold to the grid when production > demand in the house

Electricity production

- ~ 30 kWh/m² per year
- ~ 4,5% efficiency



Electricity sale to grid

~ 20-30% of electricity produced

	Units	1997	1998	1999
Production	kWh	531,4	663,9	734,1
Production	kWh/m²	23,8	29,8	32,9
Sale to grid	kWh	140,2	170,5	210,0
Sale / Prod.	-	26	26	29
Sun hours	Shr	1984	2025	1798

Case study: Le Toit Bleu (F)

Renovation project:

- Installation of PV panels on a building roof in a dense urban area
- The largest rooftop integrated PV installation in France (2001)

Aim:

- Use of a local and renewable energy source
- Integration in the building
- Education of electricity consumers
- Exemplary co-operation between decision-making organisations

Pictures: Christophe Noisette

Case study: Le Toit Blue (F)

PV layout:

- Area: 220 m²
- Number of PV modules: 200, polycrystalline
- Orientation of PV: South
- Vertical inclination of PV: 35°

PV output:

- Peak power: 22 kWp
- Estimated output: 20,000 kWh per year
- Measured output: 22,500 kWh per year (12,5% more than estimated)

Costs:

- 150,000 Euros
- Grid-connected: selling excess electricity to the grid
- Installation, assembly and erection time: 1 week

Pictures: Christophe Noisette

Summary

For each project, the appropriate type and size of PV system needs to be determined according to:

- Solar access
- Building design
- Building function

- Electricity needs
- Grid connection
- Availability of incentives

More info:

TREES

The International Energy Agency PV Power Systems

http://www.iea-pvps.org

http://www.pvdatabase.com

The Australian Business Council for Sustainable Energy

http://www.bcse.org.au

CLER – Comité de Liaison Energies Renouvelables

